Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 120: 102353, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36470608

RESUMEN

Dinoflagellates of the genera Gambierdiscus and Fukuyoa are able to produce potent neurotoxins like ciguatoxins (CTXs), which, after biooxidation in fish, are responsible for ciguatera intoxication. An isolate of G. australes from the Canary Islands, that revealed the presence of CTX-like compounds by immunosensing tools, was studied by immunocytochemistry to localize intracellular CTX-like compounds, using 8H4 monoclonal antibody that specifically recognizes the right wing of CTX1B and CTX3C analogues. Confocal microscopy observations of immunostained whole cells revealed a strong positive reaction on cell surface and all along the cell outline, while no reaction was detected inside the cells, probably because the antibody was not able to pass through thecal plates. Cell sections showed a positive antibody staining not only on thecal plates, but also inside cytoplasm, with numerous small dots and larger tubule-like reticulate structures. Small fluorescent dots were detected also on the nuclear surface. These observations indicate that CTX-like compounds are present in G. australes cytoplasm, and then are, at least in part, released to cover the cell surface.


Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas , Dinoflagelados , Animales , Dinoflagelados/química , España , Microscopía Confocal
2.
Toxins (Basel) ; 11(5)2019 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130661

RESUMEN

In September 2015, a massive occurrence of the Ostreopsis species was recorded in central Adriatic Kastela Bay. In order to taxonomically identify the Ostreopsis species responsible for this event and determine their toxin profile, cells collected in seawater and from benthic macroalgae were analyzed. Conservative taxonomic methods (light microscopy and SEM) and molecular methods (PCR-based assay) allowed the identification of the species Ostreopsis cf. ovata associated with Coolia monotis. The abundance of O. cf. ovata reached 2.9 × 104 cells L-1 in seawater, while on macroalgae, it was estimated to be up to 2.67 × 106 cells g-1 of macroalgae fresh weight and 14.4 × 106 cells g-1 of macroalgae dry weight. An indirect sandwich immunoenzymatic assay (ELISA) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) were used to determine the toxin profile. The ELISA assay revealed the presence of 5.6 pg palytoxin (PLTX) equivalents per O. cf. ovata cell. LC-HRMS was used for further characterization of the toxin profile, which showed that there were 6.3 pg of the sum of ovatoxins (OVTXs) and isobaric PLTX per O. cf. ovata cell, with a prevalence of OVTXs (6.2 pg cell-1), while the isobaric PLTX concentration was very low (0.1 pg cell-1). Among OVTXs, the highest concentration was recorded for OVTX-a (3.6 pg cell-1), followed by OVTX-b (1.3 pg cell-1), OVTX-d (1.1 pg cell-1), and OVTX-c (0.2 pg cell-1).


Asunto(s)
Dinoflagelados , Toxinas Marinas/análisis , Agua de Mar/microbiología , Dinoflagelados/química , Dinoflagelados/genética , Monitoreo del Ambiente , Océanos y Mares
3.
PLoS One ; 8(2): e57291, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460837

RESUMEN

The harmful dinoflagellate Ostreopsis cf. ovata has been causing toxic events along the Mediterranean coasts and other temperate and tropical areas, with increasing frequency during the last decade. Despite many studies, important biological features of this species are still poorly known. An integrated study, using different microscopy and molecular techniques, Raman microspectroscopy and high resolution liquid chromatography-mass spectrometry (HR LC-MS), was undertaken to elucidate cytological aspects, and identify main metabolites including toxins. The species was genetically identified as O. cf. ovata, Atlantic-Mediterranean clade. The ultrastructural results show unique features of the mucilage network abundantly produced by this species to colonize benthic substrates, with a new role of trichocysts, never described before. The amorphous polysaccharidic component of mucilage appears to derive from pusule fibrous material and mucocysts. In all stages of growth, the cells show an abundant production of lipids. Different developmental stages of chloroplasts are found in the peripheral cytoplasm and in the centre of cell. In vivo Raman microspectroscopy confirms the presence of the carotenoid peridinin in O. cf. ovata, and detects in several specimen the abundant presence of unsaturated lipids structurally related to docosahexaenoic acid. The HR LC-MS analysis reveals that ovatoxin-a is the predominant toxin, together with decreasing amounts of ovatoxin-b, -d/e, -c and putative palytoxin. Toxins concentration on a per cell basis increases from exponential to senescent phase. The results suggest that benthic blooms of this species are probably related to features such as the ability to create a unique mucilaginous sheath covering the sea bottom, associated with the production of potent toxins as palytoxin-like compounds. In this way, O. cf. ovata may be able to rapidly colonize benthic substrates outcompeting other species.


Asunto(s)
Dinoflagelados/citología , Dinoflagelados/metabolismo , Acrilamidas/química , Carotenoides/química , Cloroplastos/ultraestructura , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Venenos de Cnidarios , Dinoflagelados/genética , Dinoflagelados/ultraestructura , Genotipo , Toxinas Marinas/química , Espectrometría de Masas , Microscopía Fluorescente , Pigmentos Biológicos/metabolismo , Análisis de Componente Principal , Espectrometría Raman
4.
Environ Sci Technol ; 45(16): 7051-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21756000

RESUMEN

Ostreopsis cf. ovata, a benthic dinoflagellate often blooming along the Mediterranean coasts, has been associated with toxic events ranging from dyspnea to mild dermatitis. In late September 2009, an Ostreopsis cf. ovata bloom occurred in the Gulf of Trieste (Northern Adriatic Sea; Italy), causing pruritus and mild dermatitis in beachgoers. An integrated study was initiated to characterize Ostreopsis cells by light and confocal microscopy, PCR techniques, immunocytochemistry, and high resolution liquid chromatography-mass spectrometry (HR LC-MS). The presence of Ostreopsis cf. ovata of the Atlantic/Mediterranean clade was unambiguously established by morphological and genetic analyses in field samples. Several palytoxin-like compounds (ovatoxin-a,-b,-c,-d,-e) were identified by HR LC-MS, ovatoxin-a being the most abundant (45-64 pg/cell). Surprisingly, no palytoxin was detected. For the first time, monoclonal and polyclonal antipalytoxin antibodies revealed the intracellular cytoplasmic localization of ovatoxins, suggesting their cross-reactivity with these antibodies. Since harmful dinoflagellates do not always produce toxins, the immunocytochemical localization of ovatoxins, although qualitative, can provide an early warning for toxic Ostreopsis cells before their massive diffusion and/or concentration in seafood.


Asunto(s)
Acrilamidas/inmunología , Anticuerpos/inmunología , Dinoflagelados/citología , Dinoflagelados/metabolismo , Toxinas Marinas/análisis , Acrilamidas/química , Cromatografía Liquida , Venenos de Cnidarios , Dinoflagelados/clasificación , Inmunohistoquímica , Toxinas Marinas/química , Espectrometría de Masas , Océanos y Mares , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...