Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Children (Basel) ; 11(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38539312

RESUMEN

Children with sickle cell disease (SCD) may experience cognitive difficulties, including slowed processing speed. Thus, we investigated if processing speed changes over time. From 1992-2001, 103 participants with SCD aged 3-16 years (n ≤ 8.99 = 45; n ≥ 9.00 = 58) completed cognitive assessments. MRI was available for 54 participants. Between 1992-2002, 58 participants consented to one or two further assessments. A repeated measures regression using linear mixed-effects modelling determined longitudinal changes in processing speed index (PSI), examining the interaction between age (continuous variable) and timepoint (i.e., assessment 1 or 3) and controlling for MRI infarct status (i.e., no infarct, silent infarct, or stroke). Those aged ≤8.99 and ≥9.00 at first assessment experienced PSI decline. Declines were most prominent for the processing speed coding subtest, with a significant interaction between timepoint and age, t(31) = 2.64, p = 0.01. This decline may reflect a developmental delay, likely due to disease progression, with slower improvements in processing speed. Although there have been significant improvements in SCD treatments, mostly in high-income countries, processing speed still remains a target; thus, incorporating clinical monitoring of processing speed may help identify delay and allow for early intervention.

2.
Front Neurol ; 14: 1087054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560456

RESUMEN

Study objectives: Compared to typically developing children and young adults (CYA-TD), those living with Sickle Cell Disease (CYA-SCD) experience more cognitive difficulties, particularly with executive function. Few studies have examined the relative importance of silent cerebral infarction (SCI), haemoglobin and arterial oxygen content on age-related cognitive changes using cross-sectional or longitudinal (developmental trajectory) data. This study presents cohort data from a single timepoint to inform studies with multiple timepoints. Methods: We compared cross-sectional raw and scaled scores as age-related changes in cognition (trajectories) in CYA-SCD and age-and ethnicity-matched CYA-TD. We also compared cross-sectional age-related changes in cognition (trajectories) in CYA-SCD with and without SCI to CYA-TD. General cognitive abilities were assessed using Wechsler Intelligence Scales, including the Verbal Comprehension Index (VCI) and Perceptual Reasoning Index (PRI) underpinning IQ. Executive function was evaluated using the Delis-Kaplan Executive Function System (D-KEFS) Tower subtest and the Behaviour Rating Inventory of Executive Function (BRIEF) questionnaire. SCI were identified from contemporaneous 3 T MRI; participants with overt stroke were excluded. Recent haemoglobin was available and oxygen saturation (SpO2) was measured on the day of the MRI. Results: Data were available for 120 CYA-SCD [62 male; age = 16.78 ± 4.79 years; 42 (35%) with SCI] and 53 CYA-TD (23 male; age = 17.36 ± 5.16). Compared with CYA-TD, CYA-SCD experienced a delayed onset in VCI and slower rate of development for BRIEF Global Executive Composite, Metacognition Index (MI), and Behaviour Regulation Index. The rate of executive function development for the BRIEF MI differed significantly between CYA-TD and CYA-SCD, with those with SCI showing a 26% delay compared with CYA-TD. For CYA-SCD with SCI, arterial oxygen content explained 22% of the variance in VCI and 37% in PRI, while haemoglobin explained 29% of the variance in PRI. Conclusion: Age-related cognitive trajectories of CYA-SCD may not be impaired but may progress more slowly. Longitudinal studies are required, using tests unaffected by practice. In addition to initiation of medical treatment, including measures to improve arterial oxygen content, early cognitive intervention, educational support, and delivery of extracurricular activities could support cognitive development for CYA-SCD.Graphical Abstract.

3.
Front Neurol ; 14: 1101223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860579

RESUMEN

Background and objectives: Cognitive difficulties in people with sickle cell anemia (SCA) are related to lower processing speed index (PSI) and working memory index (WMI). However, risk factors are poorly understood so preventative strategies have not been explored. Brain volumes, specifically white matter volumes (WMV) which increases through early adulthood, have been associated with better cognition in healthy typically developing individuals. In patients with SCA, the reduced WMV and total subcortical volumes noted could explain cognitive deficits. We therefore examined developmental trajectories for regional brain volumes and cognitive endpoints in patients with SCA. Methods: Data from two cohorts, the Sleep and Asthma Cohort and Prevention of Morbidity in SCA, were available. MRI data included T1-weighted axial images, pre-processed before regional volumes were extracted using Free-surfer. PSI and WMI from the Weschler scales of intelligence were used to test neurocognitive performance. Hemoglobin, oxygen saturation, hydroxyurea treatment and socioeconomic status from education deciles were available. Results: One hundred and twenty nine patients (66 male) and 50 controls (21 male) aged 8-64 years were included. Brain volumes did not significantly differ between patients and controls. Compared with controls, PSI and WMI were significantly lower in patients with SCA, predicted by increasing age and male sex, with lower hemoglobin in the model for PSI but no effect of hydroxyurea treatment. In male patients with SCA only, WMV, age and socioeconomic status predicted PSI, while total subcortical volumes predicted WMI. Age positively and significantly predicted WMV in the whole group (patients + controls). There was a trend for age to negatively predict PSI in the whole group. For total subcortical volume and WMI, age predicted decrease only in the patient group. Developmental trajectory analysis revealed that PSI only was significantly delayed in patients at 8 years of age; the rate of development for the cognitive and brain volume data did not differ significantly from controls. Discussion: Increasing age and male sex negatively impact cognition in SCA, with processing speed, also predicted by hemoglobin, delayed by mid childhood. Associations with brain volumes were seen in males with SCA. Brain endpoints, calibrated against large control datasets, should be considered for randomized treatment trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA