Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Front Oncol ; 13: 1128560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910655

RESUMEN

Background and purpose: Intrachromosomal amplification of chromosome 21 (iAMP21) is a rare subtype of B-cell precursor acute lymphoblastic leukaemia (BCP-ALL). It is unknown how iAMP21 contributes to leukaemia. The currently known commonly amplified region is 5.1 Mb. Methods: We aimed to narrow down the common region of amplification by using high resolution techniques. Array comparative genomic hybridization (aCGH) was used to determine copy number aberrations, Affymetrix U133 Plus2 expression arrays were used to determine gene expression. Genome-wide expression correlations were evaluated using Globaltest. Results: We narrowed down the common region of amplification by combining copy number data from 12 iAMP21 cases with 52 cases from literature. The combined common region of amplification was 1.57 Mb, located from 36.07 to 37.64 Mb (GRCh38). This region is located telomeric from, but not including, RUNX1, which is the locus commonly used to diagnose iAMP21. This narrow region, which falls inside the Down Syndrome critical region, includes 13 genes of which the expression of eight genes was significantly upregulated compared with 143 non-iAMP21 B-other cases. Among these, transcriptional repressor RIPPLY3 (also known as DSCR6) was the highest overexpressed gene (fold change = 4.2, FDR < 0.001) and most strongly correlated (R = 0.58) with iAMP21-related genome-wide expression changes. Discussion: The more precise definition of the common region of amplification could be beneficial in the diagnosis of iAMP21 based on copy number analysis from DNA sequencing or arrays as well as stimulate functional research into the role of the included genes in iAMP21 biology.

3.
Sci Rep ; 9(1): 4634, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874617

RESUMEN

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is associated with a high frequency of copy number alterations (CNAs) in IKZF1, EBF1, PAX5, CDKN2A/B, RB1, BTG1, ETV6, and/or the PAR1 region (henceforth: B-cell development genes). We aimed to gain insight in the association between CNAs in these genes, clinical outcome parameters, and cellular drug resistance. 71% of newly diagnosed pediatric BCP-ALL cases harbored one or more CNAs in these B-cell development genes. The distribution and clinical relevance of these CNAs was highly subtype-dependent. In the DCOG-ALL10 cohort, only loss of IKZF1 associated as single marker with unfavorable outcome parameters and cellular drug resistance. Prednisolone resistance was observed in IKZF1-deleted primary high hyperdiploid cells (~1500-fold), while thiopurine resistance was detected in IKZF1-deleted primary BCR-ABL1-like and non-BCR-ABL1-like B-other cells (~2.7-fold). The previously described risk stratification classifiers, i.e. IKZF1plus and integrated cytogenetic and CNA classification, both predicted unfavorable outcome in the DCOG-ALL10 cohort, and associated with ex vivo drug cellular resistance to thiopurines, or L-asparaginase and thiopurines, respectively. This resistance could be attributed to overrepresentation of BCR-ABL1-like cases in these risk groups. Taken together, our data indicate that the prognostic value of CNAs in B-cell development genes is linked to subtype-related drug responses.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Linfocitos B/metabolismo , Niño , Preescolar , Estudios de Cohortes , Resistencia a Medicamentos , Femenino , Dosificación de Gen , Genes p16/fisiología , Humanos , Factor de Transcripción Ikaros/genética , Masculino , Proteínas de Neoplasias/genética , Factor de Transcripción PAX5/genética , Pronóstico , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Proteínas de Unión a Retinoblastoma/genética , Transactivadores/genética , Ubiquitina-Proteína Ligasas/genética , Proteína ETS de Variante de Translocación 6
5.
Sci Rep ; 9(1): 1875, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755670

RESUMEN

The FGF receptor signaling pathway is recurrently involved in the leukemogenic processes. Oncogenic fusions of FGFR1 with various fusion partners were described in myeloid proliferative neoplasms, and overexpression and mutations of FGFR3 are common in multiple myeloma. In addition, fibroblast growth factors are abundant in the bone marrow, and they were shown to enhance the survival of acute myeloid leukemia cells. Here we investigate the effect of FGFR stimulation on pediatric BCP-ALL cells in vitro, and search for mutations with deep targeted next-generation sequencing of mutational hotspots in FGFR1, FGFR2, and FGFR3. In 481 primary BCP-ALL cases, 28 samples from 19 unique relapsed BCP-ALL cases, and twelve BCP-ALL cell lines we found that mutations are rare (4/481 = 0.8%, 0/28 and 0/12) and do not affect codons which are frequently mutated in other malignancies. However, recombinant ligand FGF2 reduced the response to prednisolone in several BCP-ALL cell lines in vitro. We therefore conclude that FGFR signaling can contribute to prednisolone resistance in BCP-ALL cells, but that activating mutations in this receptor tyrosine kinase family are very rare.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Adolescente , Línea Celular Tumoral , Proliferación Celular , Niño , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Ligandos , Mutación , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal
6.
Sci Rep ; 8(1): 693, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330417

RESUMEN

Approximately 25% of the pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cases are genetically unclassified. More thorough elucidation of the pathobiology of these genetically unclassified ('B-other') cases may identify novel treatment options. We analyzed gene expression profiles of 572 pediatric BCP-ALL cases, representing all major ALL subtypes. High expression of STAP1, an adaptor protein downstream of the B-cell receptor (BCR), was identified in BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Limma analysis revealed an association between high expression of STAP1 and BCR signaling genes. However, STAP1 expression and pre-BCR signaling were not causally related: cytoplasmic Igµ levels were not abnormal in cases with high levels of STAP1 and stimulation of pre-BCR signaling did not induce STAP1 expression. To elucidate the role of STAP1 in BCP-ALL survival, expression was silenced in two human BCP-ALL cell lines. Knockdown of STAP1 did not reduce the proliferation rate or viability of these cells, suggesting that STAP1 is not a likely candidate for precision medicines. Moreover, high expression of STAP1 was not predictive for an unfavorable prognosis of BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Remarkably, DUX4-rearrangements and intragenic ERG deletions, were enriched in cases harboring high expression of STAP1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Homeodominio/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Aberraciones Cromosómicas , Proteínas de Fusión bcr-abl/genética , Humanos , Polimorfismo de Nucleótido Simple , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
8.
Oncotarget ; 8(52): 89923-89938, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-29163799

RESUMEN

JAK2 abnormalities may serve as target for precision medicines in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In the current study we performed a screening for JAK2 mutations and translocations, analyzed the clinical outcome and studied the efficacy of two JAK inhibitors in primary BCP-ALL cells. Importantly, we identify a number of limitations of JAK inhibitor therapy. JAK2 mutations mainly occurred in the poor prognostic subtypes BCR-ABL1-like and non- BCR-ABL1-like B-other (negative for sentinel cytogenetic lesions). JAK2 translocations were restricted to BCR-ABL1-like cases. Momelotinib and ruxolitinib were cytotoxic in both JAK2 translocated and JAK2 mutated cells, although efficacy in JAK2 mutated cells highly depended on cytokine receptor activation by TSLP. However, our data also suggest that the effect of JAK inhibition may be compromised by mutations in alternative survival pathways and microenvironment-induced resistance. Furthermore, inhibitors induced accumulation of phosphorylated JAK2Y1007, which resulted in a profound re-activation of JAK2 signaling upon release of the inhibitors. This preclinical evidence implies that further optimization and evaluation of JAK inhibitor treatment is necessary prior to its clinical integration in pediatric BCP-ALL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...