Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Front Oncol ; 13: 1144153, 2023.
Article En | MEDLINE | ID: mdl-37182134

STAT3 N-terminal domain is a promising molecular target for cancer treatment and modulation of immune responses. However, STAT3 is localized in the cytoplasm, mitochondria, and nuclei, and thus, is inaccessible to therapeutic antibodies. Its N-terminal domain lacks deep pockets on the surface and represents a typical "non-druggable" protein. In order to successfully identify potent and selective inhibitors of the domain, we have used virtual screening of billion structure-sized virtual libraries of make-on-demand screening samples. The results suggest that the expansion of accessible chemical space by cutting-edge ultra-large virtual compound databases can lead to successful development of small molecule drugs for hard-to-target intracellular proteins.

2.
Protein Sci ; 32(1): e4508, 2023 01.
Article En | MEDLINE | ID: mdl-36369695

Fibrillar collagen-integrin interactions in the extracellular matrix (ECM) regulate a multitude of cellular processes and cell signalling. Collagen I fibrils serve as the molecular scaffolding for connective tissues throughout the human body and are the most abundant protein building blocks in the ECM. The ECM environment is diverse, made up of several ECM proteins, enzymes, and proteoglycans. In particular, glycosaminoglycans (GAGs), anionic polysaccharides that decorate proteoglycans, become depleted in the ECM with natural aging and their mis-regulation has been linked to cancers and other diseases. The impact of GAG depletion in the ECM environment on collagen I protein interactions and on mechanical properties is not well understood. Here, we integrate ELISA protein binding assays with liquid high-resolution atomic force microscopy (AFM) to assess the effects of GAG depletion on the interaction of collagen I fibrils with the integrin α2I domain using separate rat tails. ELISA binding assays demonstrate that α2I preferentially binds to GAG-depleted collagen I fibrils in comparison to native fibrils. By amplitude modulated AFM in air and in solution, we find that GAG-depleted collagen I fibrils retain structural features of the native fibrils, including their characteristic D-banding pattern, a key structural motif. AFM fast force mapping in solution shows that GAG depletion reduces the stiffness of individual fibrils, lowering the indentation modulus by half compared to native fibrils. Together these results shed new light on how GAGs influence collagen I fibril-integrin interactions and may aid in strategies to treat diseases that result from GAG mis-regulation.


Extracellular Matrix , Glycosaminoglycans , Rats , Humans , Animals , Glycosaminoglycans/analysis , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Extracellular Matrix/chemistry , Proteoglycans/analysis , Proteoglycans/metabolism , Microscopy, Atomic Force , Collagen/chemistry
3.
Adv Nanobiomed Res ; 2(6)2022 Jun.
Article En | MEDLINE | ID: mdl-36051821

Neuroinflammation is one of the hallmarks contributing to Parkinson's Disease (PD) pathology, where microglial activation occurs as one of the earliest events, triggered by extracellular alpha synuclein (aSYN) binding to the CD36 receptor. Here, CD36-binding nanoparticles (NPs) containing synthetic tartaric acid-based amphiphilic polymers (AMs) were rationally designed to inhibit this aSYN-CD36 binding. In silico docking revealed that four AMs with varying alkyl side chain lengths presented differential levels of CD36 binding affinity and that an optimal alkyl chain length would promote the strongest inhibitory activity towards aSYN-CD36 interactions. In vitro competitive binding assays indicated that the inhibitory activity of AM-based NPs plateaued at intermediate side chain lengths of 12- and 18-carbons, supporting the in silico docking predictions. These 12- and 18-carbon length AM NPs also had significantly stronger effects on reducing aSYN internalization and inhibiting the production of the proinflammatory molecules TNF-α and nitric oxide from aSYN-challenged microglia. All four NPs modulated the gene expression of aSYN-challenged microglia, downregulating the expression of the proinflammatory genes TNF, IL-6, and IL-1ß, and upregulating the expression of the anti-inflammatory genes TGF-ß and Arg1. Overall, this work represents a novel polymeric nanotechnology platform that can be used to modulate aSYN-induced microglial activation in PD.

4.
Proteins ; 90(5): 1044-1053, 2022 05.
Article En | MEDLINE | ID: mdl-34375467

Since the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor-binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD-ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor-binding domain from SARS-CoV-2 and SARS-CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID-19 pandemic in Loop 3 do not affect this flexibility. We use a loop-modeling protocol to generate and simulate novel conformations of the CoV2-RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2-bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design.


COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Binding Sites , Humans , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
5.
Biomolecules ; 11(10)2021 10 06.
Article En | MEDLINE | ID: mdl-34680099

Glycation of α-synuclein (αSyn), as occurs with aging, has been linked to the progression of Parkinson's disease (PD) through the promotion of advanced glycation end-products and the formation of toxic oligomers that cannot be properly cleared from neurons. DJ-1, an antioxidative protein that plays a critical role in PD pathology, has been proposed to repair glycation in proteins, yet a mechanism has not been elucidated. In this study, we integrate solution nuclear magnetic resonance (NMR) spectroscopy and liquid atomic force microscopy (AFM) techniques to characterize glycated N-terminally acetylated-αSyn (glyc-ac-αSyn) and its interaction with DJ-1. Glycation of ac-αSyn by methylglyoxal increases oligomer formation, as visualized by AFM in solution, resulting in decreased dynamics of the monomer amide backbone around the Lys residues, as measured using NMR. Upon addition of DJ-1, this NMR signature of glyc-ac-αSyn monomers reverts to a native ac-αSyn-like character. This phenomenon is reversible upon removal of DJ-1 from the solution. Using relaxation-based NMR, we have identified the binding site on DJ-1 for glycated and native ac-αSyn as the catalytic pocket and established that the oxidation state of the catalytic cysteine is imperative for binding. Based on our results, we propose a novel mechanism by which DJ-1 scavenges glyc-ac-αSyn oligomers without chemical deglycation, suppresses glyc-ac-αSyn monomer-oligomer interactions, and releases free glyc-ac-αSyn monomers in solution. The interference of DJ-1 with ac-αSyn oligomers may promote free ac-αSyn monomer in solution and suppress the propagation of toxic oligomer and fibril species. These results expand the understanding of the role of DJ-1 in PD pathology by acting as a scavenger for aggregated αSyn.


Glycation End Products, Advanced/genetics , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , alpha-Synuclein/genetics , Acetylation , Cysteine/metabolism , Humans , Magnetic Resonance Spectroscopy , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Multimerization/genetics
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article En | MEDLINE | ID: mdl-33903234

Amyloid fibril formation of α-synuclein (αS) is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD). Growing evidence suggests that progression of PD is linked to cell-to-cell propagation of αS fibrils, which leads to seeding of endogenous intrinsically disordered monomer via templated elongation and secondary nucleation. A molecular understanding of the seeding mechanism and driving interactions is crucial to inhibit progression of amyloid formation. Here, using relaxation-based solution NMR experiments designed to probe large complexes, we probe weak interactions of intrinsically disordered acetylated-αS (Ac-αS) monomers with seeding-competent Ac-αS fibrils and seeding-incompetent off-pathway oligomers to identify Ac-αS monomer residues at the binding interface. Under conditions that favor fibril elongation, we determine that the first 11 N-terminal residues on the monomer form a common binding site for both fibrils and off-pathway oligomers. Additionally, the presence of off-pathway oligomers within a fibril seeding environment suppresses seeded amyloid formation, as observed through thioflavin-T fluorescence experiments. This highlights that off-pathway αS oligomers can act as an auto-inhibitor against αS fibril elongation. Based on these data taken together with previous results, we propose a model in which Ac-αS monomer recruitment to the fibril is driven by interactions between the intrinsically disordered monomer N terminus and the intrinsically disordered flanking regions (IDR) on the fibril surface. We suggest that this monomer recruitment may play a role in the elongation of amyloid fibrils and highlight the potential of the IDRs of the fibril as important therapeutic targets against seeded amyloid formation.


Amyloid/ultrastructure , Intrinsically Disordered Proteins/ultrastructure , Parkinson Disease/genetics , alpha-Synuclein/ultrastructure , Amyloid/chemistry , Amyloid/genetics , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Binding Sites/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Parkinson Disease/pathology , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
7.
J Am Chem Soc ; 142(3): 1321-1331, 2020 01 22.
Article En | MEDLINE | ID: mdl-31875390

Amyloidogenesis is significant in both protein function and pathology. Amyloid formation of folded, globular proteins is commonly initiated by partial or complete unfolding. However, how this unfolding event is triggered for proteins that are otherwise stable in their native environments is not well understood. The accumulation of the immunoglobulin protein ß2-microglobulin (ß2m) into amyloid plaques in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis (DRA). While ß2m does not form amyloid unassisted near neutral pH in vitro, the localization of ß2m deposits to joint spaces suggests a role for the local extracellular matrix (ECM) proteins, specifically collagens, in promoting amyloid formation. Indeed, collagen and other ECM components have been observed to facilitate ß2m amyloid formation, but the large size and anisotropy of the complex, combined with the low affinity of these interactions, have limited atomic-level elucidation of the amyloid-promoting mechanism(s) by these molecules. Using solution NMR approaches that uniquely probe weak interactions in large molecular weight complexes, we are able to map the binding interfaces on ß2m for collagen I and detect collagen I-induced µs-ms time-scale dynamics in the ß2m backbone. By combining solution NMR relaxation methods and 15N-dark-state exchange saturation transfer experiments, we propose a model in which weak, multimodal collagen I-ß2m interactions promote exchange with a minor population of amyloid-competent species to induce fibrillogenesis. The results portray the intimate role of the environment in switching an innocuous protein into an amyloid-competent state, rationalizing the localization of amyloid deposits in DRA.


Amyloid/metabolism , Collagen Type I/metabolism , beta 2-Microglobulin/metabolism , Amyloid/chemistry , Humans , Protein Binding , Protein Conformation
8.
J Biol Chem ; 294(39): 14442-14453, 2019 09 27.
Article En | MEDLINE | ID: mdl-31406019

Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2ß1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2ß1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin α2ß1 interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2-inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-α2I interaction. The Gly → Arg substitution destabilized CMP-α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.


Amino Acid Substitution , Collagen/chemistry , Ehlers-Danlos Syndrome/genetics , Integrin alpha2beta1/metabolism , Peptides/metabolism , Binding Sites , Cell Adhesion , Cell Line , Collagen/metabolism , Humans , Integrin alpha2beta1/chemistry , Integrin alpha2beta1/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Molecular Docking Simulation , Peptides/chemistry , Protein Binding
9.
J Biol Chem ; 294(24): 9392-9401, 2019 06 14.
Article En | MEDLINE | ID: mdl-30996004

Amyloid deposition of WT human ß2-microglobulin (WT-hß2m) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis. In vitro, WT-hß2m does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hß2m aggregation and dialysis-related amyloidosis onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hß2m in physiologically relevant conditions. Using thioflavin T fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hß2m assembly. Our results revealed that LMW-heparin strongly promotes WT-hß2m fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hß2m amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hß2m amyloid fibrils attenuates surface-mediated growth of WT-hß2m fibrils, demonstrating a key role of secondary nucleation in WT-hß2m amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hß2m monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hß2m. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hß2m into amyloid, which lead to dramatic effects on the time course of assembly.


Amyloid/chemistry , Amyloidosis/pathology , Collagen Type I/administration & dosage , Extracellular Matrix/metabolism , Heparin, Low-Molecular-Weight/administration & dosage , beta 2-Microglobulin/chemistry , Amyloid/metabolism , Amyloidosis/metabolism , Anticoagulants/administration & dosage , Humans , Mutation , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism
10.
Macromolecules ; 52(21): 8295-8304, 2019 Nov 12.
Article En | MEDLINE | ID: mdl-33814613

From protein science, it is well understood that ordered folding and 3D structure mainly arises from balanced and noncovalent polar and nonpolar interactions, such as hydrogen bonding. Similarly, it is understood that single-chain polymer nanoparticles (SCNPs) will also compact and become more rigid with greater hydrophobicity and intrachain hydrogen bonding. Here, we couple high throughput photoinduced electron/energy transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization with high throughput small-angle X-ray scattering (SAXS) to characterize a large combinatorial library (>450) of several homopolymers, random heteropolymers, block copolymers, PEG-conjugated polymers, and other polymer-functionalized polymers. Coupling these two high throughput tools enables us to study the major influence(s) for compactness and flexibility in higher breadth than ever before possible. Not surprisingly, we found that many were either highly disordered in solution, in the case of a highly hydrophilic polymer, or insoluble if too hydrophobic. Remarkably, we also found a small group (9/457) of PEG-functionalized random heteropolymers and block copolymers that exhibited compactness and flexibility similar to that of bovine serum albumin (BSA) by dynamic light scattering (DLS), NMR, and SAXS. In general, we found that describing a rough association between compactness and flexibility parameters (R g /R h and Porod Exponent, respectively) with logP, a quantity that describes hydrophobicity, helps to demonstrate and predict material parameters that lead to SCNPs with greater compactness, rigidity, and stability. Future implementation of this combinatorial and high throughput approach for characterizing SCNPs will allow for the creation of detailed design parameters for well-defined macromolecular chemistry.

11.
Sci Rep ; 8(1): 16646, 2018 11 09.
Article En | MEDLINE | ID: mdl-30413772

Collagen fibril interactions with cells and macromolecules in the extracellular matrix drive numerous cellular functions. Binding motifs for dozens of collagen-binding proteins have been determined on fully exposed collagen triple helical monomers. However, when the monomers are assembled into the functional collagen fibril, many binding motifs become inaccessible, and yet critical cellular processes occur. Here, we have developed an early stage atomic model of the smallest repeating unit of the type I collagen fibril at the fibril surface that provides a novel framework to address questions about these functionally necessary yet seemingly obstructed interactions. We use an integrative approach by combining molecular dynamics (MD) simulations with atomic force microscopy (AFM) experiments and show that reconstruction of the collagen monomers within the complex fibril play a critical role in collagen interactions. In particular, the fibril surface shows three major conformational changes, which allow cryptic binding sites, including an integrin motif involved in platelet aggregation, to be exposed. The observed dynamics and reconstruction of the fibril surface promote its role as a "smart fibril" to keep certain binding sites cryptic, and to allow accessibility of recognition domains when appropriate.


Collagen Type I/chemistry , Collagen Type I/metabolism , Fibrillar Collagens/chemistry , Fibrillar Collagens/metabolism , Integrins/metabolism , Animals , Binding Sites , Extracellular Matrix/metabolism , Integrins/chemistry , Molecular Dynamics Simulation , Protein Conformation , Rats
12.
Biomolecules ; 7(4)2017 11 01.
Article En | MEDLINE | ID: mdl-29104255

Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.


Cell Adhesion/genetics , Collagen/chemistry , Extracellular Matrix/chemistry , Fibrillar Collagens/chemistry , Binding Sites , Collagen/genetics , Collagen/therapeutic use , Drug Delivery Systems , Fibrillar Collagens/genetics , Humans , Ligands , Protein Binding
13.
J Mol Biol ; 429(2): 308-323, 2017 01 20.
Article En | MEDLINE | ID: mdl-27986569

Candidates for the toxic molecular species in the expanded polyglutamine (polyQ) repeat diseases range from various types of aggregates to "misfolded" monomers. One way to vet these candidates is to develop mutants that restrict conformational landscapes. Previously, we inserted two self-complementary ß-hairpin enhancing motifs into a short polyQ sequence to generate a mutant, here called "ßHP," that exhibits greatly improved amyloid nucleation without measurably enhancing ß-structure in the monomer ensemble. We extend these studies here by introducing single-backbone H-bond impairing modifications αN-methyl Gln or l-Pro at key positions within ßHP. Modifications predicted to allow formation of a fully H-bonded ß-hairpin at the fibril edge while interfering with H-bonding to the next incoming monomer exhibit poor amyloid formation and act as potent inhibitors in trans of simple polyQ peptide aggregation. In contrast, a modification that disrupts intra-ß-hairpin H-bonding within ßHP, while also aggregating poorly, is ineffective at inhibiting amyloid formation in trans. The inhibitors constitute a dynamic version of the edge-protection negative design strategy used in protein evolution to limit unwanted protein aggregation. Our data support a model in which polyQ peptides containing strong ß-hairpin encouraging motifs only rarely form ß-hairpin conformations in the monomer ensemble, but nonetheless take on such conformations at key steps during amyloid formation. The results provide insights into polyQ solution structure and fibril formation while also suggesting an approach to the design of inhibitors of polyQ amyloid growth that focuses on conformational requirements for fibril and nucleus elongation.


Amyloid beta-Peptides/chemistry , Peptides/chemistry , Protein Engineering , Amino Acid Sequence , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Peptides/antagonists & inhibitors , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Reproducibility of Results
14.
Proc Natl Acad Sci U S A ; 113(6): 1546-51, 2016 Feb 09.
Article En | MEDLINE | ID: mdl-26831073

Polyglutamine expansion within the exon1 of huntingtin leads to protein misfolding, aggregation, and cytotoxicity in Huntington's disease. This incurable neurodegenerative disease is the most prevalent member of a family of CAG repeat expansion disorders. Although mature exon1 fibrils are viable candidates for the toxic species, their molecular structure and how they form have remained poorly understood. Using advanced magic angle spinning solid-state NMR, we directly probe the structure of the rigid core that is at the heart of huntingtin exon1 fibrils and other polyglutamine aggregates, via measurements of long-range intramolecular and intermolecular contacts, backbone and side-chain torsion angles, relaxation measurements, and calculations of chemical shifts. These experiments reveal the presence of ß-hairpin-containing ß-sheets that are connected through interdigitating extended side chains. Despite dramatic differences in aggregation behavior, huntingtin exon1 fibrils and other polyglutamine-based aggregates contain identical ß-strand-based cores. Prior structural models, derived from X-ray fiber diffraction and computational analyses, are shown to be inconsistent with the solid-state NMR results. Internally, the polyglutamine amyloid fibrils are coassembled from differently structured monomers, which we describe as a type of "intrinsic" polymorphism. A stochastic polyglutamine-specific aggregation mechanism is introduced to explain this phenomenon. We show that the aggregation of mutant huntingtin exon1 proceeds via an intramolecular collapse of the expanded polyglutamine domain and discuss the implications of this observation for our understanding of its misfolding and aggregation mechanisms.


Exons/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Peptides/chemistry , Amino Acid Sequence , Amyloid/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Sequence Data , Nerve Tissue Proteins/ultrastructure , Peptides/genetics , Protein Structure, Secondary , Stochastic Processes
15.
Biophys J ; 109(9): 1873-84, 2015 Nov 03.
Article En | MEDLINE | ID: mdl-26536264

The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly (13)C,(15)N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.


Apoptosis/physiology , Cardiolipins/metabolism , Cytochromes c/metabolism , Mitochondria/metabolism , Peroxidase/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Escherichia coli , Lipid Bilayers/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphatidylcholines/chemistry , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
16.
Biochemistry ; 53(42): 6653-66, 2014 Oct 28.
Article En | MEDLINE | ID: mdl-25280367

In Huntington's disease, expansion of a polyglutamine (polyQ) domain in the huntingtin (htt) protein leads to misfolding and aggregation. There is much interest in the molecular features that distinguish monomeric, oligomeric, and fibrillar species that populate the aggregation pathway and likely differ in cytotoxicity. The mechanism and rate of aggregation are greatly affected by the domains flanking the polyQ segment within exon 1 of htt. A "protective" C-terminal proline-rich flanking domain inhibits aggregation by inducing polyproline II structure (PPII) within an extended portion of polyQ. The N-terminal flanking segment (htt(NT)) adopts an α-helical structure as it drives aggregation, helps stabilize oligomers and fibrils, and is seemingly integral to their supramolecular assembly. Via solid-state nuclear magnetic resonance (ssNMR), we probe how, in the mature fibrils, the htt flanking domains impact the polyQ domain and in particular the localization of the ß-structured amyloid core. Using residue-specific and uniformly labeled samples, we find that the amyloid core occupies most of the polyQ domain but ends just prior to the prolines. We probe the structural and dynamical features of the remarkably abrupt ß-sheet to PPII transition and discuss the potential connections to certain htt-binding proteins. We also examine the htt(NT) α-helix outside the polyQ amyloid core. Despite its presumed structural and demonstrated stabilizing roles in the fibrils, quantitative ssNMR measurements of residue-specific dynamics show that it undergoes distinct solvent-coupled motion. This dynamical feature seems reminiscent of molten-globule-like α-helix-rich features attributed to the nonfibrillar oligomeric species of various amyloidogenic proteins.


Amyloid/chemistry , Nerve Tissue Proteins/chemistry , Peptides/chemistry , Exons , Humans , Huntingtin Protein , Nerve Tissue Proteins/genetics , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Structure, Secondary
17.
Solid State Nucl Magn Reson ; 53: 1-12, 2013 Jun.
Article En | MEDLINE | ID: mdl-23477865

The (13)C chemical-shift anisotropy in anthracene derivatives (9,10-dimethylanthracene, 9,10-dihydroanthracene, dianthracene, and triptycene) has been measured by the 2D FIREMAT timed pulse sequence and the corresponding set of principal values has been determined by the TIGER processing method. These molecules expand the data base of (13)C CSA measurements of fused aromatic rings some bridged by sp(3) carbon resulting in an unusual bonding configuration, which leads to distinctive aromatic (13)C CSA values. Crystal lattice distortions to the CSA were observed to change the isotropic shift by 2.5 to 3.3 ppm and changes as large as 8.3 ppm in principal components. Modeling of the CSA data by GIPAW DFT (GGA-PBE/ultrafine) shielding calculations resulted in an rms chemical-shift distance of 2.8 ppm after lattice including geometry optimization of the diffraction structures by the GIPAW method at GGA-PBE/ultrafine level. Attention is given to the substituted aromatic carbon in the phenyl groups (here forth referred to as the α-carbon) with respect to CSA modeling with electronic methods. The (13)C CSA of this position is accurately determined due to its spectral isolation of the isotropic shift that limits overlap in the FIREMAT spectrum. In cases where the bridging ring is sp(3) carbon, the current density is reduced from extending beyond the peripheral phenyl groups; this plays a significant role in the magnetic shielding of the α-position. Nuclear independent chemical-shift calculations based on GIAO DFT (B3LYP/6-31G(d)) shielding calculations were used to model the intramolecular π-interactions in dianthracene and triptycene. These NICS results estimate the isotropic shift of the α-position in dianthracene to be insignificantly affected by the presence of the neighboring aromatic rings. However, a notable change in isotropic shielding, Δσ(iso)=-2.1 ppm, is predicted for the α- position of triptycene. Experimentally, the δ22 principal component at the α-position for both dianthracene and triptycene increases by at least 12 ppm compared to 9,10-dihydroanthracene. To rationalize this change, shielding calculations in idealized structures are explored. The spatial position of the bicyclic scaffolding of the bridging ring plays a key role in the large increase in δ22 for the α-carbon.

18.
J Mol Biol ; 425(7): 1183-97, 2013 Apr 12.
Article En | MEDLINE | ID: mdl-23353826

The conformational preferences of polyglutamine (polyQ) sequences are of major interest because of their central importance in the expanded CAG repeat diseases that include Huntington's disease. Here, we explore the response of various biophysical parameters to the introduction of ß-hairpin motifs within polyQ sequences. These motifs (tryptophan zipper, disulfide, d-Pro-Gly, Coulombic attraction, l-Pro-Gly) enhance formation rates and stabilities of amyloid fibrils with degrees of effectiveness well correlated with their known abilities to enhance ß-hairpin formation in other peptides. These changes led to decreases in the critical nucleus for amyloid formation from a value of n=4 for a simple, unbroken Q23 sequence to approximate unitary n values for similar length polyQs containing ß-hairpin motifs. At the same time, the morphologies, secondary structures, and bioactivities of the resulting fibrils were essentially unchanged from simple polyQ aggregates. In particular, the signature pattern of solid-state NMR (13)C Gln resonances that appears to be unique to polyQ amyloid is replicated exactly in fibrils from a ß-hairpin polyQ. Importantly, while ß-hairpin motifs do produce enhancements in the equilibrium constant for nucleation in aggregation reactions, these Kn values remain quite low (~10(-)(10)) and there is no evidence for significant enhancement of ß-structure within the monomer ensemble. The results indicate an important role for ß-turns in the nucleation mechanism and structure of polyQ amyloid and have implications for the nature of the toxic species in expanded CAG repeat diseases.


Amyloid/chemistry , Glutamine/chemistry , Peptides/chemistry , Protein Structure, Secondary , Amino Acid Sequence , Amyloid/metabolism , Amyloid/ultrastructure , Animals , Exons/genetics , Glutamine/genetics , Glutamine/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Huntingtin Protein , Kinetics , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Microscopy, Electron , Models, Molecular , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PC12 Cells , Peptides/genetics , Peptides/metabolism , Protein Conformation , Rats , Spectroscopy, Fourier Transform Infrared
19.
J Mol Biol ; 424(1-2): 1-14, 2012 Nov 23.
Article En | MEDLINE | ID: mdl-22999956

Aggregation of expanded polyglutamine repeat-containing fragments of the huntingtin (htt) protein may play a key role in Huntington's disease. Consistent with this hypothesis, two Ser-to-Asp mutations in the 17-amino-acid N-terminal htt(NT) segment abrogate both visible brain aggregates and disease symptoms in a full-length Q(97) htt mouse model while compromising aggregation kinetics and aggregate morphology in an htt fragment in vitro [Gu et al. (2009). Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron64, 828-840]. The htt(NT) segment has been shown to play a critical role in facilitating nucleation of amyloid formation in htt N-terminal exon1 fragments. We show here how these Ser-to-Asp mutations dramatically affect aggregation kinetics and aggregate structural integrity. First, these negatively charged Ser replacements impair the assembly of the α-helical oligomers that play a critical role in htt amyloid nucleation, thus providing an explanation for reduced amyloid formation rates. Second, these sequence modifications alter aggregate morphology, decrease aggregate stability, and enhance the steric accessibility of the htt(NT) segment within the aggregates. Together, these changes make the sequence-modified peptides kinetically and thermodynamically less likely to aggregate and more susceptible, if they do, to posttranslational modifications and degradation. These effects also show how phosphorylation of a protein might achieve cellular effects via direct impacts on the protein's aggregation properties. In fact, preliminary studies on exon1-like molecules containing phosphoryl-Ser residues at positions 13 and 16 show that they reduce aggregation rates and generate atypical aggregate morphologies similar to the effects of the Ser-to-Asp mutants.


Amyloid/metabolism , Nerve Tissue Proteins/metabolism , Serine/metabolism , Amino Acid Sequence , Animals , Exons , Humans , Huntingtin Protein , Kinetics , Mice , Molecular Sequence Data , Mutation , Nerve Tissue Proteins/genetics , Phosphorylation , Thermodynamics
20.
Biochemistry ; 51(1): 90-9, 2012 Jan 10.
Article En | MEDLINE | ID: mdl-22142403

Members of the caveolin protein family are implicated in the formation of caveolae and play important roles in a number of signaling pathways and in the regulation of various proteins. We employ complementary spectroscopic methods to study the structure of the caveolin scaffolding domain (CSD) in caveolin-1 fragments, while bound to cholesterol-rich membranes. This key domain is thought to be involved in multiple critical functions that include protein recognition, oligomerization, and cholesterol binding. In our membrane-bound peptides, residues within the flanking intramembrane domain (IMD) are found to adopt an α-helical structure, consistent with its commonly believed helical hairpin conformation. Intriguingly, in these same peptides, we observe a ß-stranded conformation for residues in the CSD, contrasting with earlier reports, which commonly do not reflect ß-structure. Our experimental data based on solid-state NMR, CD, and FTIR are found to be consistent with computational analyses of the secondary structure preference of the primary sequence. We discuss how our structural data of membrane binding Cav fragments may match certain general features of cholesterol-binding domains and could be consistent with the role for CSD in protein recognition and homo-oligomerization.


Caveolin 1/chemistry , Caveolin 1/physiology , Cholesterol/chemistry , Cholesterol/physiology , Membrane Lipids/chemistry , Membrane Lipids/physiology , Amino Acid Sequence , Animals , Caveolin 1/metabolism , Cholesterol/metabolism , Humans , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/physiology , Predictive Value of Tests , Protein Binding/physiology , Protein Conformation , Protein Interaction Domains and Motifs/physiology , Protein Multimerization/physiology , Protein Structure, Secondary/physiology , Protein Structure, Tertiary/physiology
...