Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Hazard Mater ; 448: 130973, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36860081

The formation of As(V) substituted hydroxylapatite (HAP) has a vital influence on the fate of As(V) in the environment. However, despite growing evidence showing that HAP crystallizes in vivo and in vitro with amorphous calcium phosphate (ACP) as a precursor, a knowledge gap exists concerning the transformation from arsenate-bearing ACP (AsACP) to arsenate-bearing HAP (AsHAP). Here we synthesized AsACP nano-particles with varied As contents and investigated the arsenic incorporation during their phase evolution. The phase evolution results showed that the transformation process of AsACP to AsHAP could be divided into three Stages. A higher As(V) loading significantly delayed the transformation of AsACP, increased the distortion degree, and decreased the crystallinity of AsHAP. NMR result showed that the PO43- tetrahedral is geometrically preserved when PO43- is substituted by AsO43-. From AsACP to AsHAP, the As-substitution led to the transformation inhibition and As(V) immobilization.

2.
Adv Mater ; 35(25): e2210176, 2023 Jun.
Article En | MEDLINE | ID: mdl-36943743

The power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli. It not only reduces the ingression of external species such as oxygen and moisture, but also suppresses the egress of volatile organic components during the thermal stability testing. The treated PSCs demonstrate efficiency of 19.28% (active area of 58.5 cm2 ) and 17.62% (aperture area of 64 cm2 ) for the corresponding mini-module. More importantly, unencapsulated slot-die-coated mini-modules incorporating the all-organic surface modifier show ≈80% efficiency retention after 7500 h (313 days) of storage under 30% relative humidity (RH). They also remarkably retain more than 90% of the initial efficiency for over 850 h while being measured continuously.

3.
Mater Horiz ; 10(2): 536-546, 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36426759

Mixed-dimensional perovskites containing mixtures of organic cations hold great promise to deliver highly stable and efficient solar cells. However, although a plethora of relatively bulky organic cations have been reported for such purposes, a fundamental understanding of the materials' structure, composition, and phase, along with their correlated effects on the corresponding optoelectronic properties and degradation mechanism remains elusive. Herein, we systematically engineer the structures of bulky organic cations to template low-dimensional perovskites with contrasting inorganic framework dimensionality, connectivity, and coordination deformation. By combining X-ray single-crystal structural analysis with depth-profiling XPS, solid-state NMR, and femtosecond transient absorption, it is revealed that not all low-dimensional species work equally well as dopants. Instead, it was found that inorganic architectures with lesser structural distortion tend to yield less disordered energetic and defect landscapes in the resulting mixed-dimensional perovskites, augmented in materials with a longer photoluminescence (PL) lifetime, higher PL quantum yield (up to 11%), improved solar cell performance and enhanced thermal stability (T80 up to 1000 h, unencapsulated). Our study highlights the importance of designing templating organic cations that yield low-dimensional materials with much less structural distortion profiles to be used as additives in stable and efficient perovskite solar cells.

4.
ACS Nano ; 16(2): 2942-2952, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35040632

Extending halide perovskites' optoelectronic properties to stimuli-responsive chromism enables switchable optoelectronics, information display, and smart window applications. Here, we demonstrate a band gap tunability (chromism) via crystal structure transformation from three-dimensional FAPbBr3 to a ⟨110⟩ oriented FAn+2PbnBr3n+2 structure using a mono-halide/cation composition (FA/Pb) tuning. Furthermore, we illustrate reversible photochromism in halide perovskite by modulating the intermediate n phase in the FAn+2PbnBr3n+2 structure, enabling greater control of the optical band gap and luminescence of a ⟨110⟩ oriented mono-halide/cation perovskite. Proton transfer reaction-mass spectroscopy carried out to precisely quantify the decomposition product reveals that the organic solvent in the film is a key contributor to the structural transformation and, therefore, the chromism in the ⟨110⟩ structure. These intermediate n phases (2 ≤ n ≤ ∞) stabilize in metastable states in the FAn+2PbnBr3n+2 system, which is accessible via strain or optical or thermal input. The structure reversibility in the ⟨110⟩ perovskite allowed us to demonstrate a class of photochromic sensors capable of self-adaptation to lighting.

5.
Nanoscale ; 13(37): 15770-15780, 2021 Oct 01.
Article En | MEDLINE | ID: mdl-34528047

This investigation has characterised the structure and surface chemistry of CsPbBr3 nanocrystals with controlled diameters between 6.4 to 12.8 nm. The nanocrystals were investigated via a thorough 133Cs solid state NMR and nuclear relaxation study, identifying and mapping radially-increasing nanoscale disorder. This work has formalised 133Cs NMR as a highly sensitive probe of nanocrystal size, which can conveniently analyse nanocrystals in solid forms, as they would be utilised in optoelectronic devices. A combined multinuclear solid state NMR and XPS approach, including 133Cs-1H heteronuclear correlation 2D (HETCOR) NMR, was utilised to study the nanocrystal surface and ligands, demonstrating that the surface is Cs-Br rich with vacancies passivated by didodecyldimethylammonium bromide (DDAB) ligands. Furthermore, it is shown that a negligible amount of phosphonate ligands remain on the powder nanocrystal surface, despite the key role of octylphosphonic acid (OPA) in controlling the colloidal nanocrystal growth. The CsPbBr3 NCs were shown to be structurally stable under ambient conditions for up to 6 months, albeit with some particle agglomeration.

6.
J Phys Chem Lett ; 12(39): 9569-9578, 2021 Oct 07.
Article En | MEDLINE | ID: mdl-34581578

Heterostructures, combining perovskite nanocrystals (PNC) and chalcogenide quantum dots, could pave a path to optoelectronic device applications by enabling absorption in the near-infrared region, tailorable electronic properties, and stable crystal structures. Ideally, the heterostructure host material requires a similar lattice constant as the guest which is also constrained by the synthesis protocol and materials selectivity. Herein, we present an efficient one-pot hot-injection method to synthesize colloidal all-inorganic cesium lead halide-lead sulfide (CsPbX3 (X = Cl, Br, I)-PbS) heterostructure nanocrystals (HNCs) via the epitaxial growth of the perovskite onto the presynthesized PbS nanocrystals (NCs). Optical and structural characterization evidenced the formation of heterostructures. The embedding of PbS NCs into CsPbX3 perovskite allows the tuning of the absorption and emission from 400 to 1100 nm by tuning the size and composition of perovskite HNCs. The CsPbI3-PbS HNCs show enhanced stability in ambient conditions. The stability, tunable optical properties, and variable band alignments accessible in this system would have implications in the design of novel optoelectronic applications such as light-emitting diodes, photodetectors, photocatalysis, and photovoltaics.

7.
ACS Nano ; 15(4): 6395-6409, 2021 Apr 27.
Article En | MEDLINE | ID: mdl-33818071

Major strides have been made in the development of materials and devices based around low-dimensional hybrid group 14 metal halide perovskites. Thus far, this work has mostly focused on compounds containing highly toxic Pb, with the analogous less toxic Sn materials being comparatively poorly evolved. In response, the study herein aims to (i) provide insight into the impact of templating cations upon the structure of n = 1 2D tin iodide perovskites (where n refers to the number of contiguous two-dimensional (2D) inorganic layers, i.e., not separated by organic cations) and (ii) examine their potential as light absorbers for photovoltaic (PV) cells. It was discovered through systematic tuning of organic dications that imidazolium rings are able to induce the formation of (110)-oriented materials, including examples of "3 × 3" corrugated Sn-I perovskites. This structural outcome is a consequence of a combination of supramolecular interactions of the two endocyclic N atoms of the imidazolium rings with the Sn-I framework, and the comparatively high tendency of Sn2+ ions to stereochemically express their 5s2 lone pairs . More importantly, the resulting materials feature very short separations between their 2D inorganic layers with iodide-iodide (I···I) contacts as small as 4.174 Å, which is among the shortest ever recorded for 2D tin iodide perovskites. These proximate inorganic distances, combined with the polarizable nature of the imidazolium moiety, eases the separation of photogenerated charge within the materials. This is evident from the measurement of excitonic activation energies as low as 83(10) meV for ImEA[SnI4]. When combined with superior light absorption capabilities relative to their lead congeners, this allowed the fabrication of lead-free solar cells with incident photon-to-current and power conversion efficiencies of up to 70% and 2.26%, respectively, which are among the highest values reported for pure n = 1 2D group 14 metal halide perovskites. In fact, these values are superior to the corresponding lead iodide material, which demonstrates that 2D Sn-based materials have significant potential as less toxic alternatives to their Pb counterparts.

8.
Nanoscale ; 13(1): 59-65, 2021 Jan 07.
Article En | MEDLINE | ID: mdl-33346310

Metal lead halide perovskite nanocrystals have emerged as promising candidates for optoelectronic applications. However, the inclusion of toxic lead is a major concern for the commercial viability of these materials. Herein, we introduce a new family of non-toxic reduced dimension Rb2CuX3 (X = Br, Cl) colloidal nanocrystals with one-dimensional crystal structure consisting [CuX4]3- ribbons isolated by Rb+ cations. These nanocrystals were synthesised using a room-temperature method under ambient conditions, which makes them cost effective and scalable. Phase purity quantification was confirmed by Rietveld refinement of powder X-ray diffraction and corroborated by 87Rb MAS NMR technique. Both samples also exhibited high thermal stability up to 500 °C, which is essential for optoelectronic applications. Rb2CuBr3 and Rb2CuCl3 display PL emission peaks at 387 nm and 400 nm with high PLQYs of ∼100% and ∼49%, respectively. Lastly, the first colloidal synthesis of quantum-confined rubidium copper halide-based nanocrystals opens up a new avenue to exploit their optical properties in lighting technology as well as water sterilisation and air purification.

9.
Adv Mater ; 32(40): e2003296, 2020 Oct.
Article En | MEDLINE | ID: mdl-32856340

Realization of reduced ionic (cationic and anionic) defects at the surface and grain boundaries (GBs) of perovskite films is vital to boost the power conversion efficiency of organic-inorganic halide perovskite (OIHP) solar cells. Although numerous strategies have been developed, effective passivation still remains a great challenge due to the complexity and diversity of these defects. Herein, a solid-state interdiffusion process using multi-cation hybrid halide perovskite quantum dots (QDs) is introduced as a strategy to heal the ionic defects at the surface and GBs. It is found that the solid-state interdiffusion process leads to a reduction in OIHP shallow defects. In addition, Cs+ distribution in QDs greatly influences the effectiveness of ionic defect passivation with significant enhancement to all photovoltaic performance characteristics observed on treating the solar cells with Cs0.05 (MA0.17 FA0.83 )0.95 PbBr3 (abbreviated as QDs-Cs5). This enables power conversion efficiency (PCE) exceeding 21% to be achieved with more than 90% of its initial PCE retained on exposure to continuous illumination of more than 550 h.

10.
J Am Chem Soc ; 141(50): 19616-19624, 2019 Dec 18.
Article En | MEDLINE | ID: mdl-31747756

It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.

11.
Nanoscale ; 11(25): 12370-12380, 2019 Jul 07.
Article En | MEDLINE | ID: mdl-31215940

We report the self-assembly of an extensive inter-ligand hydrogen-bonding network of octylphosphonates on the surface of cesium lead bromide nanocrystals (CsPbBr3 NCs). The post-synthetic addition of octylphosphonic acid to oleic acid/oleylamine-capped CsPbBr3 NCs promoted the attachment of octylphosphonate to the NC surface, while the remaining oleylammonium ligands maintained the high dispersability of the NCs in non-polar solvent. Through powerful 2D solid-state 31P-1H NMR, we demonstrated that an ethyl acetate/acetonitrile purification regime was crucial for initiating the self-assembly of extensive octylphosphonate chains. Octylphosphonate ligands were found to preferentially bind in a monodentate mode through P-O-, leaving polar P[double bond, length as m-dash]O and P-OH groups free to form inter-ligand hydrogen bonds. The octylphosphonate ligand network strongly passivated the nanocrystal surface, yielding a fully-purified CsPbBr3 NC ink with PLQY of 62%, over 3 times higher than untreated NCs. We translated this to LED devices, achieving maximum external quantum efficiency and luminance of 7.74% and 1022 cd m-2 with OPA treatment, as opposed to 3.59% and 229 cd m-2 for untreated CsPbBr3 NCs. This represents one of the highest efficiency LEDs obtained for all-inorganic CsPbBr3 NCs, accomplished through simple, effective passivation and purification processes. The robust binding of octylphosphonates to the perovskite lattice, and specifically their ability to interlink through hydrogen bonding, offers a promising passivation approach which could potentially be beneficial across a breadth of halide perovskite optoelectronic applications.

12.
Materials (Basel) ; 12(11)2019 Jun 04.
Article En | MEDLINE | ID: mdl-31167438

Copper-doped hydroxyapatite (HA) of nominal composition Ca10(PO4)6[Cux(OH)2-2xOx] (0.0 ≤ x ≤ 0.8) was prepared by solid-state and wet chemical processing to explore the impact of the synthesis route and mode of crystal chemical incorporation of copper on the antibacterial efficacy against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains. Apatites prepared by solid-state reaction showed unit cell volume dilation from 527.17 Å3 for copper-free HA to 533.31 Å3 for material of the putative composition Ca10(PO4)6[Cu0.8(OH)0.4O0.8] consistent with Cu+ insertion into the [001] hydroxyapatite channel. This was less pronounced (528.30 Å3 to 529.3 Å3) in the corresponding wet chemical synthesised products, suggesting less complete Cu tunnel incorporation and partial tenancy of Cu in place of calcium. X-ray absorption spectroscopy suggests fast quenching is necessary to prevent oxidation of Cu+ to Cu2+. Raman spectroscopy revealed an absorption band at 630 cm-1 characteristic of symmetric O-Cu+-O units tenanted in the apatite channel while solid-state 31P magic-angle-spinning nuclear magnetic resonance (MAS NMR) supported a vacancy-Cu+ substitution model within the apatite channel. The copper doping strategy increases antibacterial efficiency by 25% to 55% compared to undoped HA, with the finer particle sizes and greater specific surface areas of the wet chemical material demonstrating superior efficacy.

13.
Phys Chem Chem Phys ; 20(41): 26734-26743, 2018 Nov 07.
Article En | MEDLINE | ID: mdl-30324213

The ability to clearly relate local structure to function is desirable for many catalytically relevant Pd-containing systems. This report represents the first direct 105Pd solid state NMR measurements of diamagnetic inorganic (K2Pd(iv)Cl6, (NH4)2Pd(iv)Cl6 and K2Pd(iv)Br6) complexes, and micron- and nano-sized Pd metal particles at room temperature, thereby introducing effective 105Pd chemical shift and Knight shift ranges in the solid state. The very large 105Pd quadrupole moment (Q) makes the quadrupole parameters (CQ, ηQ) extremely sensitive to small structural distortions. Despite the well-defined high symmetry octahedral positions describing the immediate Pd coordination environment, 105Pd NMR measurements can detect longer range disorder and anisotropic motion in the interstitial positions. The approach adopted here combines high resolution X-ray pair distribution function (PDF) analyses with 105Pd, 39K and 35Cl MAS NMR, and shows solid state NMR to be a very sensitive probe of short range structural perturbations. Solid state 105Pd NMR observations of ∼44-149 µm Pd sponge, ∼20-150 nm Pd black nanoparticles, highly monodisperse 16 ± 3 nm PVP-stabilised Pd nanoparticles, and highly polydisperse ∼2-1100 nm biomineralized Pd nanoparticles (bio-Pd) on pyrolysed amorphous carbon detect physical differences between these systems based on relative bulk:surface ratios and monodispersity/size homogeneity. This introduces the possibility of utilizing solid state NMR to help elucidate the structure-function properties of commercial Pd-based catalyst systems.

14.
J Am Chem Soc ; 139(36): 12670-12680, 2017 09 13.
Article En | MEDLINE | ID: mdl-28806077

Hydrated niobium oxides are used as strong solid acids with a wide variety of catalytic applications, yet the correlations between structure and acidity remain unclear. New insights into the structural features giving rise to Lewis and Brønsted acid sites are presently achieved. It appears that Lewis acid sites can arise from lower coordinate NbO5 and in some cases NbO4 sites, which are due to the formation of oxygen vacancies in thin and flexible NbO6 systems. Such structural flexibility of Nb-O systems is particularly pronounced in high surface area nanostructured materials, including few-layer to monolayer or mesoporous Nb2O5·nH2O synthesized in the presence of stabilizers. Bulk materials on the other hand only possess a few acid sites due to lower surface areas and structural rigidity: small numbers of Brønsted acid sites on HNb3O8 arise from a protonic structure due to the water content, whereas no acid sites are detected for anhydrous crystalline H-Nb2O5.

...