Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Brain Pathol ; : e13267, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724175

Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods. The present study aims to overcome these limitations with novel combinations of histologic techniques to characterize the sialylation landscape of O- and N-linked glycans in autopsy-confirmed AD post-mortem brain tissue. Sialylated glycans facilitate important cellular functions including cell-to-cell interaction, cell migration, cell adhesion, immune regulation, and membrane excitability. Previous studies have not investigated both N- and O-linked sialylated glycans in neurodegeneration. In this study, the location and distribution of sialylated glycans were evaluated in three brain regions (frontal cortex, hippocampus, and cerebellum) from 10 AD cases using quantitative digital pathology techniques. Notably, we found significantly greater N-sialylation of the Aß plaque microenvironment compared with O-sialylation. Plaque-associated microglia displayed the most intense N-sialylation proximal to plaque pathology. Further analyses revealed distinct differences in the levels of N- and O-sialylation between cored and diffuse Aß plaque morphologies. Interestingly, phosphorylated tau pathology led to a slight increase in N-sialylation and no influence of O-sialylation in these AD brains. Confirming our previous observations in mice with novel histologic approach, these findings support microglia sialylation appears to have a relationship with AD protein aggregates while providing potential targets for therapeutic strategies.

2.
bioRxiv ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38766008

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

3.
Hippocampus ; 34(1): 29-35, 2024 Jan.
Article En | MEDLINE | ID: mdl-37961834

Dysfunction of the endosomal-lysosomal network is a notable feature of Alzheimer's disease (AD) pathology. Dysfunctional endo-lysosomal vacuoles accumulate in dystrophic neurites surrounding amyloid ß (Aß) plaques and may be involved in the pathogenesis and progression of Aß aggregates. Trafficking and thus maturation of these dysfunctional vacuoles is disrupted in the vicinity of Aß plaques. Transmembrane protein 55B (TMEM55B), also known as phosphatidylinositol-4,5-bisphosphate 4-phosphatase 1 (PIP4P1) is an endo-lysosomal membrane protein that is necessary for appropriate trafficking of endo-lysosomes. The present study tested whether overexpression of TMEM55B in the hippocampus could prevent plaque-associated axonal accumulation of dysfunctional endo-lysosomes, reduce Aß plaque load, and prevent hippocampal-dependent learning and memory deficits in the 5XFAD mouse models of Aß plaque pathology. Immunohistochemical analyses revealed a modest but significant reduction in the accumulation of endo-lysosomes in dystrophic neurites surrounding Aß plaques, but there was no change in hippocampal-dependent memory or plaque load. Overall, these data indicate a potential role for TMEM55B in reducing endo-lysosomal dysfunction during AD-like Aß pathology.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Memory Disorders , Mice, Transgenic , Plaque, Amyloid/metabolism
4.
bioRxiv ; 2023 Dec 08.
Article En | MEDLINE | ID: mdl-38106102

Phospholipase C gamma-2 (PLCγ2) catalyzes the hydrolysis of the membrane phosphatidylinositol-4,5-bisphosphate (PIP2) to form diacylglycerol (DAG) and inositol trisphosphate (IP3), which subsequently feed into numerous downstream signaling pathways. PLCG2 polymorphisms are associated with both reduced and increased risk of Alzheimer's disease (AD) and with longevity. In the brain, PLCG2 is highly expressed in microglia, where it is proposed to regulate phagocytosis, secretion of cytokines/chemokines, cell survival and proliferation. We analyzed the brains of three-month-old PLCγ2 knockout (KO), heterozygous (HET), and wild-type (WT) mice using multiomics approaches, including shotgun lipidomics, proteomics, and gene expression profiling, and immunofluorescence. Lipidomic analyses revealed sex-specific losses of total cerebrum PIP2 and decreasing trends of DAG content in KOs. In addition, PLCγ2 depletion led to significant losses of myelin-specific lipids and decreasing trends of myelin-enriched lipids. Consistent with our lipidomics results, RNA profiling revealed sex-specific changes in the expression levels of several myelin-related genes. Further, consistent with the available literature, gene expression profiling revealed subtle changes on microglia phenotype in mature adult KOs under baseline conditions, suggestive of reduced microglia reactivity. Immunohistochemistry confirmed subtle differences in density of microglia and oligodendrocytes in KOs. Exploratory proteomic pathway analyses revealed changes in KO and HET females compared to WTs, with over-abundant proteins pointing to mTOR signaling, and under-abundant proteins to oligodendrocytes. Overall, our data indicate that loss of PLCγ2 has subtle effects on brain homeostasis that may underlie enhanced vulnerability to AD pathology and aging via novel mechanisms in addition to regulation of microglia function.

5.
Aging Brain ; 3: 100078, 2023.
Article En | MEDLINE | ID: mdl-37333676

Habituation is a form of learning characterized by a decrement in responsiveness to a stimulus that is repeated or prolonged. In rodents, habituation to a novel environment is characterized by a decrease in locomotion over time spent in a novel environment. Habituation to a novel environment is dependent on hippocampal function, suggesting that habituation behavior may be a relevant readout for hippocampal-dependent memory deficits that are characteristic of Alzheimer's disease (AD). Current assays that measure hippocampal-dependent memory in preclinical animal models of AD have not accurately predicted the cognitive protection of novel interventions in human trials. Here, we tested whether a behavioral habituation paradigm could detect age-associated changes in a common preclinical mouse model of AD-like amyloid pathology, the 5XFAD mouse. We exposed 5XFAD mice and age-matched wild-type (WT) littermates at 3, 6, and 9 months of age to a novel environment over two sessions separated by 24 h and measured their locomotion. WT mice habituated to the novel environment over time, while 5XFAD mice displayed age-dependent deficits in behavioral habituation. We replicated our results using publicly available open field data from 5XFAD and late-onset AD mouse models with TREM2*R47H and APOE4 mutations. Overall, we present behavioral habituation as a potentially sensitive task to assess age-associated behavioral deficits in 5XFAD mice and other mouse models of AD that could be used to test the preclinical efficacy of novel AD therapeutics.

6.
Geroscience ; 45(3): 1539-1555, 2023 06.
Article En | MEDLINE | ID: mdl-36867284

Terminal sialic acid residues are present on most glycoproteins and glycolipids, but levels of sialylation are known to change in the brain throughout the lifespan as well as during disease. Sialic acids are important for numerous cellular processes including cell adhesion, neurodevelopment, and immune regulation as well as pathogen invasion into host cells. Neuraminidase enzymes, also known as sialidases, are responsible for removal of terminal sialic acids in a process known as desialylation. Neuraminidase 1 (Neu1) cleaves the α-2,6 bond of terminal sialic acids. Aging individuals with dementia are often treated with the antiviral medication oseltamivir, which is associated with induction of adverse neuropsychiatric side effects; this drug inhibits both viral and mammalian Neu1. The present study tested whether a clinically relevant antiviral dosing regimen of oseltamivir would disrupt behavior in the 5XFAD mouse model of Alzheimer's disease amyloid pathology or wild-type littermates. While oseltamivir treatment did not impact mouse behavior or modify amyloid plaque size or morphology, a novel spatial distribution of α-2,6 sialic acid residues was discovered in 5XFAD mice that was not present in wild-type littermates. Further analyses revealed that α-2,6 sialic acid residues were not localized the amyloid plaques but instead localized to plaque-associated microglia. Notably, treatment with oseltamivir did not alter α-2,6 sialic acid distribution on plaque-associated microglia in 5XFAD mice which may be due to downregulation of Neu1 transcript levels in 5XFAD mice. Overall, this study suggests that plaque-associated microglia are highly sialylated and are resistant to change with oseltamivir, thus interfering with microglia immune recognition of and response to amyloid pathology.


Microglia , N-Acetylneuraminic Acid , Mice , Animals , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/pharmacology , Oseltamivir/pharmacology , Oseltamivir/metabolism , Neuraminidase/metabolism , Neuraminidase/pharmacology , Sialic Acids/metabolism , Sialic Acids/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Mammals
7.
Neuropharmacology ; 227: 109454, 2023 04 01.
Article En | MEDLINE | ID: mdl-36740015

Epidemiological studies suggest that L-type calcium channel (LTCC) antagonists may reduce the incidence of age-associated neurodegenerative diseases including Alzheimer's disease (AD). However, the neuroprotective mechanism of LTCC antagonists is unknown. Amyloid-ß (Aß) pathology disrupts intracellular calcium signaling, which regulates lysosomes and microglial responses. Neurons near Aß plaques develop dystrophic neurites, which are abnormal swellings that accumulate lysosomes. Further, microglia accumulate around Aß plaques and secrete inflammatory cytokines. We hypothesized that antagonism of LTCCs with isradipine would reduce Aß plaque-associated dystrophic neurites and inflammatory microglia in the 5XFAD mouse model by restoring normal intracellular calcium regulation. To test this hypothesis, we treated 6- and 9-month-old 5XFAD mice with isradipine and tested behavior, examined Aß plaques, microglia, and dystrophic neurites. We found that isradipine treatment age-dependently reduces dystrophic neurites and leads to trending decreases in Aß but does not modulate plaque associated microglia regardless of age. Our findings provide insight into how antagonizing LTCCs alters specific cell types in the Aß plaque environment, providing valuable information for potential treatment targets in future AD studies.


Alzheimer Disease , Amyloid beta-Protein Precursor , Mice , Animals , Amyloid beta-Protein Precursor/metabolism , Neurites/metabolism , Calcium Channel Blockers , Calcium Channels, L-Type/metabolism , Isradipine/metabolism , Mice, Transgenic , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Plaque, Amyloid/metabolism , Disease Models, Animal
8.
Prog Neurobiol ; 216: 102306, 2022 09.
Article En | MEDLINE | ID: mdl-35714860

Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.


Alzheimer Disease , Tauopathies , Alzheimer Disease/metabolism , Brain/metabolism , Humans , Microglia/metabolism , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism
9.
Cell Rep ; 35(10): 109189, 2021 06 08.
Article En | MEDLINE | ID: mdl-34107263

Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.


Cell Communication/physiology , Genome-Wide Association Study/methods , Protein Interaction Maps/physiology , alpha-Synuclein/metabolism , Humans
10.
J Neurosci Res ; 99(1): 141-162, 2021 01.
Article En | MEDLINE | ID: mdl-31997405

Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.


Calcium Channels, L-Type/metabolism , Central Nervous System Diseases/metabolism , Microglia/metabolism , Animals , Humans
11.
J Neuroinflammation ; 15(1): 311, 2018 Nov 09.
Article En | MEDLINE | ID: mdl-30413160

BACKGROUND: Activation of inflammation pathways in the brain occurs in Alzheimer's disease and may contribute to the accumulation and spread of pathological proteins including tau. The goal of this study was to identify how changes in microglia, a key inflammatory cell type, may contribute to tau protein accumulation and pathology-associated changes in immune and non-immune cell processes such as neuronal degeneration, astrocyte physiology, cytokine expression, and blood vessel morphology. METHODS: We used PLX3397 (290 mg/kg), a colony-stimulating factor receptor 1 (CSF1R) inhibitor, to reduce the number of microglia in the brains of a tau-overexpressing mouse model. Mice were fed PLX3397 in chow or a control diet for 3 months beginning at 12 months of age and then were subsequently analyzed for changes in blood vessel morphology by in vivo two-photon microscopy and tissues were collected for biochemistry and histology. RESULTS: PLX3397 reduced microglial numbers by 30% regardless of genotype compared to control diet-treated mice. No change in tau burden, cortical atrophy, blood vessels, or astrocyte activation was detected. All Tg4510 mice were observed to have an increased in "disease-associated" microglial gene expression, but PLX3397 treatment did not reduce expression of these genes. Surprisingly, PLX3397 treatment resulted in upregulation of CD68 and Tgf1ß. CONCLUSIONS: Manipulating microglial activity may not be an effective strategy to combat tau pathological lesions. Higher doses of PLX3397 may be required or earlier intervention in the disease course. Overall, this indicates a need for a better understanding of specific microglial changes and their relation to the disease process.


Aging , Microglia/pathology , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism , Aminopyridines/pharmacology , Animals , Blood Vessels/pathology , Calcium-Binding Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/metabolism , Mutation/genetics , Pyrroles/pharmacology , RNA, Messenger/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Tauopathies/genetics
12.
J Neuroinflammation ; 15(1): 269, 2018 Sep 18.
Article En | MEDLINE | ID: mdl-30227881

BACKGROUND: Misfolding of microtubule-associated protein tau (MAPT) within neurons into neurofibrillary tangles is an important pathological feature of Alzheimer's disease (AD). Tau pathology correlates with cognitive decline in AD and follows a stereotypical anatomical course; several recent studies indicate that tau pathology spreads inter-neuronally via misfolded tau "seeds." Previous research has focused on neurons as the source of these tau seeds. However, recent studies as well as the data contained herein suggest that microglia, the resident immune cells of the central nervous system, play a direct role in the spread of tau pathology. METHODS: Primary adult microglia were isolated from human AD cases and the rTg4510 tauopathy mouse model and used for analysis of gene expression, tau protein by Simoa technology, and quantification of tau seeding using a highly sensitive fluorescence resonance energy transfer (FRET) biosensing cell line for tau seeding and aggregation. RESULTS: Here, we show that microglia isolated from both human tauopathy and AD cases and the rTg4510 tauopathy mouse model stably contain tau seeds, despite not synthesizing any tau. Microglia releases these tau seeds in vitro into their conditioned media (CM). This suggests that microglia have taken up tau but are incapable of entirely neutralizing its seeding activity. Indeed, when in vitro microglia are given media containing tau seeds, they reduce (but do not eliminate) tau seeding. When microglia are treated with inflammagens such as lipopolysaccharide (LPS), interleukin-1ß (IL1ß), tumor necrosis factor α (TNFα), or amyloid-ß, their ability to reduce tau seeding is unchanged and these factors do not induce seeding activity on their own. CONCLUSIONS: Overall, these data suggest that microglia have a complex role: they are capable of taking up and breaking down seed competent tau, but do so inefficiently and could therefore potentially play a role in the spread of tau pathology.


Alzheimer Disease/pathology , Brain/pathology , Gene Expression Regulation/genetics , Microglia/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Calcium-Binding Proteins/metabolism , Cells, Cultured , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Mutation/genetics , Neurofibrillary Tangles , Neurons/metabolism , tau Proteins/genetics
13.
J Neurochem ; 147(1): 24-39, 2018 10.
Article En | MEDLINE | ID: mdl-29806693

Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-ß plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-ß synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.


Alzheimer Disease/genetics , Calcineurin/genetics , Neurons/metabolism , Alzheimer Disease/pathology , Animals , Computational Biology , Gene Expression Regulation , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Hippocampus , Male , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Neurons/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Synapses/metabolism , Transcriptional Activation
15.
J Neuroinflammation ; 12: 63, 2015 Apr 02.
Article En | MEDLINE | ID: mdl-25889938

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.


Aging , Encephalitis/complications , Encephalitis/pathology , Hippocampus/metabolism , Insulin/therapeutic use , Memory Disorders/drug therapy , Analysis of Variance , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/etiology , Protein Kinase C/metabolism , Rats , Rats, Inbred F344 , Reaction Time/drug effects , Spatial Memory/drug effects
16.
J Neuroinflammation ; 12: 56, 2015 Mar 25.
Article En | MEDLINE | ID: mdl-25888781

BACKGROUND: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. METHODS: The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. RESULTS: LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. CONCLUSIONS: Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.


Calcium Channels, L-Type/metabolism , Calcium/metabolism , Encephalitis/complications , Encephalitis/pathology , Memory Disorders/etiology , Ryanodine Receptor Calcium Release Channel/metabolism , AIDS-Related Complex/metabolism , Analysis of Variance , Animals , Calcium Channel Blockers/therapeutic use , Calcium Channels, L-Type/genetics , Chronic Disease , Dantrolene/therapeutic use , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Maze Learning/drug effects , Memory Disorders/drug therapy , Muscle Relaxants, Central/therapeutic use , Nimodipine/therapeutic use , Rats , Rats, Inbred F344 , Ryanodine Receptor Calcium Release Channel/genetics , Spatial Memory/drug effects
17.
J Neuroimmune Pharmacol ; 10(1): 35-44, 2015 Mar.
Article En | MEDLINE | ID: mdl-25318607

Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits. Here, we utilized an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose (0.25 µg/h) of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. Rats were treated with either the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant motor deficits in the accelerating rotarod task as well as abnormal behavioral agitation in the forced swim task and open field. Corresponding with these behavioral deficits, LPS-infused rats also had significant increases in microglia activation and loss of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars compacta (SNpc) and locus coeruleus (LC). Treatment with nimodipine or dantrolene normalized LPS-induced abnormalities in the rotarod and forced swim, restored the number of TH-immunoreactive cells in the LC, and significantly reduced microglia activation in the SNpc. Only nimodipine significantly reduced microglia activation in the LC, and neither drug increased TH immunoreactivity in the SNpc. These findings demonstrate that the Ca(+2) dysregulation in the LC and SN brainstem nuclei is differentially altered by chronic neuroinflammation. Overall, targeting Ca + 2 dysregulation may be an important target for ameliorating neurodegeneration in the SNpc and LC.


Anti-Inflammatory Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Locus Coeruleus/drug effects , Neuroprotective Agents/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Substantia Nigra/drug effects , Animals , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Locus Coeruleus/pathology , Male , Motor Activity/drug effects , Postural Balance/drug effects , Rats , Rats, Inbred F344 , Substantia Nigra/pathology , Swimming/psychology
18.
J Neuroimmunol ; 267(1-2): 86-91, 2014 Feb 15.
Article En | MEDLINE | ID: mdl-24393520

The pro-inflammatory cytokine IL-1ß is known to play a role in several models of aging, neuroinflammation, and neurodegenerative diseases. Here, we document a detailed time- and age-dependent pattern of pro- and anti-inflammatory biomarkers following bilateral intrahippocampal injection of interleukin-1ß. During the first 12h several pro- and anti-inflammatory cytokines increased in the aged (24 mo old) rats, some of which returned to baseline levels by 24h post-injection while others remained elevated for 72 h post-injection. In contrast, no such increases were observed in the young (3 mo old) rats. Interestingly, young rats up-regulated mRNA of two pro-inflammatory cytokines, interleukin-1ß and tumor necrosis factor-α, but did not translate these transcripts into functional proteins, which may be related to expression of suppressor of cytokine signaling type-2. These results contribute to our understanding of how neuroinflammation may contribute to the pathogenesis of age-related neurodegenerative disorders due to an age-related bias towards a hyper-reactive immune response that is not selective for a pro- or anti-inflammatory phenotype following an inflammatory stimulus.


Aging , Cytokines/metabolism , Hippocampus/drug effects , Interleukin-1beta/pharmacology , Signal Transduction/drug effects , Analysis of Variance , Animals , Cytokines/genetics , Gene Expression Regulation/drug effects , Male , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Time Factors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Neurobiol Aging ; 35(5): 1065-73, 2014 May.
Article En | MEDLINE | ID: mdl-24315728

Neuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers. Although LPS infusion stimulated a robust increase in IL-1ß gene and protein expression, this increase was blunted with age. LPS infusion also increased the density of activated microglia cells throughout the midbrain and brainstem. Corresponding to the development of a pro-inflammatory environment, LC and SNpc neurons immunopositive for tyrosine-hydroxylase (the rate-limiting synthetic enzyme for dopamine and norepinephrine) decreased in number, along with a decrease in tyrosine-hydroxylase gene expression in the midbrain and/or brainstem region. Our data support the concept that continuous exposure to a pro-inflammatory environment drives exaggerated changes in the production and release of inflammatory mediators that interact with age to impair functional capacity of the SNpc and LC.


Aging/immunology , Aging/pathology , Catecholamines/physiology , Inflammation/genetics , Inflammation/pathology , Locus Coeruleus/immunology , Locus Coeruleus/pathology , Neuroimmunomodulation/genetics , Neurons/immunology , Neurons/pathology , Substantia Nigra/immunology , Substantia Nigra/pathology , Aging/genetics , Animals , Gene Expression , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Interleukin-1beta/metabolism , Lipopolysaccharides/immunology , Male , Microglia/immunology , Microglia/pathology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Peptide Fragments/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/immunology
20.
Neurobiol Aging ; 34(10): 2293-301, 2013 Oct.
Article En | MEDLINE | ID: mdl-23639208

The current study investigated the hypothesis that the duration of the proinflammatory environment plays a critical role in the brain's response that results in negative consequences on cognition, biochemistry, and pathology. Lipopolysaccharide or artificial cerebrospinal fluid was slowly (250 ηg/h) infused into the fourth ventricle of young (3-month-old), adult (9-month-old), or aged (23-month-old) male F-344 rats for 21 or 56 days. The rats were then tested in the water pool task and endogenous hippocampal levels of pro- and anti-inflammatory proteins and genes and indicators of glutamatergic function were determined. The duration of the lipopolysaccharide infusion, compared with the age of the rat, had the greatest effect on (1) spatial working memory; (2) the density and distribution of activated microglia within the hippocampus; and (3) the cytokine protein and gene expression profiles within the hippocampus. The duration- and age-dependent consequences of neuroinflammation might explain why human adults respond positively to anti-inflammatory therapies and aged humans do not.


Aging/metabolism , Hippocampus/physiopathology , Lipopolysaccharides , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/physiopathology , Aging/pathology , Aging/psychology , Animals , Cerebrospinal Fluid , Cytokines/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Humans , Male , Memory , Microglia/pathology , Neurogenic Inflammation/metabolism , Neurogenic Inflammation/pathology , Rats , Rats, Inbred F344
...