Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 97
1.
J Exp Biol ; 226(24)2023 12 15.
Article En | MEDLINE | ID: mdl-38078372

An animal's body size impacts many aspects of its structure and function (Y); insights that only become apparent when viewed over several orders of magnitude of body mass (M) and expressed allometrically in the form of power law equations (Y=aMb). The resulting relationships are apparent clusters of similar exponents (b) revealing emergent 'patterns of design' that shed light on the universal principles of structure and function. Basic physical principles of surface area, volume and heat exchange apply to all objects, including animals, and many consequences must be attributed to these fundamental properties. Starting with Galileo's description of the shapes of bones in the 16th century and extending to 19th century explanations of heat production and loss by Sarrus and Rameaux, allometric patterns have provided numerous biological insights. Here, we examine several of these insights and explore how the selective pressures and scaling may differ when comparing animals in a vegetative (basal) state and those utilizing their maximum metabolic capacities. It seems that the selective pressures under those two conditions differ. We caution that allometric patterns invite explanations that lack supporting data or may be dismissed because there is hesitation among biologists to make comparisons lacking phylogenetic support. We argue that emergent allometric patterns have inherent value and continue to be the fodder for many fruitful hypotheses.


Basal Metabolism , Thermogenesis , Animals , Phylogeny , Body Size , Species Specificity
5.
J Exp Biol ; 222(Pt 16)2019 08 23.
Article En | MEDLINE | ID: mdl-31444282
6.
J Exp Biol ; 222(Pt 9)2019 05 02.
Article En | MEDLINE | ID: mdl-31048402
7.
J Exp Biol ; 221(Pt 21)2018 10 31.
Article En | MEDLINE | ID: mdl-30381476

Maximal oxygen consumption (V̇O2,max) denotes the upper limit of aerobic energy flux through the cascade of oxygen transfer from the environment to tissue mitochondria, essentially to skeletal muscle mitochondria during intense exercise. A high V̇O2,max is a key component for athletic success in human and animal endurance sports. From a public health perspective, a high V̇O2,max is a validated negative predictor for cardiovascular disease and all-cause mortality. V̇O2,max varies by more than twofold between sedentary subjects and shows a heritability value greater than 50%. Likewise, the capacity for an individual's V̇O2,max to be increased with exercise training (i.e. its trainability) varies massively between subjects, independent of each subject's V̇O2,max in the absence of training (i.e. their sedentary V̇O2,max), and with a similarly high heritability. Athletic as well as public health interests have prompted a search for the genetic profile of sedentary V̇O2,max and of trainability. Candidate-gene studies, gene-expression studies and genome-wide-association studies (GWAS) have not been able to identify a genetic signature that distinguishes subjects or athletes with a favorable V̇O2,max phenotype or a high trainability from controls. Here, I propose that multigenetic phenotypes such as V̇O2,max are emergent properties of multiple underlying transcriptomic networks modified by epistasis, the epigenome and the epitranscriptome. The genetic approach is thus considered to be necessary but insufficient for furthering our understanding of multigenetic higher-level functions.


Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Oxygen/metabolism , Animals , Humans , Sports
8.
Front Physiol ; 9: 1343, 2018.
Article En | MEDLINE | ID: mdl-30337877

We investigated molecular and cellular parameters which set metabolic and mechanical functioning of knee extensor muscles in the operated and contralateral control leg of 9 patients with a chronically insufficient anterior cruciate ligament (ACL; 26.6 ± 8.3 years, 8 males, 1 female) after open reconstructive surgery (week 0), after ambulant physiotherapy under cast immobilization (week 9), succeeding rehabilitation training (up to week 26), and subsequent voluntary physical activity (week 260). Clinical indices of knee function in the operated leg were improved at 52 weeks and remained at a comparable level at week 260. CSA of the quadriceps (-18%), MCSA of muscle fibers (-24%), and capillary-to-fiber ratio (-24%) in m. vastus lateralis from the ACL insufficient leg were lower at week 0 than reference values in the contralateral leg at week 260. Slow type fiber percentage (-35%) and mitochondrial volume density (-39%) were reduced in m. vastus lateralis from the operated leg at weeks 9 and 26. Composition alterations in the operated leg exceeded those in the contralateral leg and, with the exception of the volume density of subsarcolemmal mitochondria, returned to the reference levels at week 260. Leg-specific deterioration of metabolic characteristics in the vasti from the operated leg was reflected by the down-regulation of mitochondrial respiration complex I-III markers (-41-57%) at week 9. After rehabilitation training at week 26, the specific Y397 phosphorylation of focal adhesion kinase (FAK), which is a proxy for mechano-regulation, was elevated by 71% in the operated leg but not in the contralateral leg, which had performed strengthening type exercise during ambulant physiotherapy. Total FAK protein and Y397 phosphorylation levels were lowered in both legs at week 26 resulting in positive correlations with mitochondrial volume densities and mitochondrial protein levels. The findings emphasize that a loss of mechanical and metabolic characteristics in knee extensor muscle remains detectable years after untreated ACL rupture, which may be aggravated in the post-operative phase by the deterioration of slow-oxidative characteristics after reconstruction due to insufficient load-bearing muscle activity. The reestablishment of muscle composition subsequent to years of voluntary physical activity reinforces that slow-to-fast fiber transformation is reversible in humans.

13.
PLoS One ; 12(4): e0174864, 2017.
Article En | MEDLINE | ID: mdl-28384286

BACKGROUND: Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. METHODS: Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). RESULTS: Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. CONCLUSION: Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise.


Exercise , Homozygote , Neovascularization, Physiologic/genetics , Polymorphism, Single Nucleotide , Tenascin/genetics , Adenosine/genetics , Adult , Biopsy , Humans , Male , Muscle, Skeletal/blood supply , Neovascularization, Physiologic/physiology , Physical Endurance , Tenascin/chemistry , Thymidine/genetics , Young Adult
14.
Front Physiol ; 7: 483, 2016.
Article En | MEDLINE | ID: mdl-27899894

Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400-500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20-30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery.

15.
Am J Physiol Regul Integr Comp Physiol ; 310(10): R943-51, 2016 05 15.
Article En | MEDLINE | ID: mdl-27009051

Intermittent claudication (IC) is the most commonly reported symptom of peripheral arterial disease (PAD). Impaired limb blood flow is a major casual factor of lower exercise tolerance in PAD but cannot entirely explain it. We hypothesized that IC is associated with structural changes of the capillary-mitochondria interface that could contribute to the reduction of exercise tolerance in IC patients. Capillary and mitochondrial morphometry were performed after light and transmission electron microscopy using vastus lateralis muscle biopsies of 14 IC patients and 10 age-matched controls, and peak power output (PPO) was determined for all participants using an incremental single-leg knee-extension protocol. Capillary density was lower (411 ± 90 mm(-2) vs. 506 ± 95 mm(-2); P ≤ 0.05) in the biopsies of the IC patients than in those of the controls. The basement membrane (BM) around capillaries was thicker (543 ± 82 nm vs. 423 ± 97 nm; P ≤ 0.01) and the volume density of mitochondria was lower (3.51 ± 0.56% vs. 4.60 ± 0.74%; P ≤ 0.01) in the IC patients than the controls. In the IC patients, a higher proportion of capillaries appeared with collapsed slit-like lumen and/or swollen endothelium. PPO was lower (18.5 ± 9.9 W vs. 33.5 ± 9.4 W; P ≤ 0.01) in the IC patients than the controls. We suggest that several structural alterations in skeletal muscle, either collectively or separately, contribute to the reduction of exercise tolerance in IC patients.


Capillaries/physiology , Intermittent Claudication/pathology , Mitochondria, Muscle/physiology , Muscle, Skeletal/blood supply , Aged , Female , Humans , Male , Middle Aged , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology
17.
J Exp Biol ; 219(Pt 2): 205-13, 2016 Jan.
Article En | MEDLINE | ID: mdl-26792332

The skeletal muscle phenotype is subject to considerable malleability depending on use as well as internal and external cues. In humans, low-load endurance-type exercise leads to qualitative changes of muscle tissue characterized by an increase in structures supporting oxygen delivery and consumption, such as capillaries and mitochondria. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In endurance exercise, stress-induced signaling leads to transcriptional upregulation of genes, with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several interrelated signaling pathways converge on the transcriptional co-activator PGC-1α, perceived to be the coordinator of much of the transcriptional and post-transcriptional processes. Strength training is dominated by a translational upregulation controlled by mTORC1. mTORC1 is mainly regulated by an insulin- and/or growth-factor-dependent signaling cascade as well as mechanical and nutritional cues. Muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. In addition, there are several negative regulators of muscle mass. We currently have a good descriptive understanding of the molecular mechanisms controlling the muscle phenotype. The topology of signaling networks seems highly conserved among species, with the signaling outcome being dependent on the particular way individual species make use of the options offered by the multi-nodal networks. As a consequence, muscle structural and functional modifications can be achieved by an almost unlimited combination of inputs and downstream signaling events.


Gene Regulatory Networks , Muscle, Skeletal/physiology , Animals , Exercise/physiology , Humans , Physical Endurance/physiology , Signal Transduction/genetics , Stress, Physiological/genetics
18.
Int J Sports Physiol Perform ; 11(4): 455-63, 2016 May.
Article En | MEDLINE | ID: mdl-26356790

PURPOSE: To verify whether relative age effects (RAEs) occur among young male and female Swiss Alpine skiers of different age groups and performance levels. In addition, the efficacy of normalizing performance in physical tests to height and body mass to attenuate RAEs eventually present was tested. METHODS: The Swiss Ski Power Test consists of anthropometric measures and physical tests for coordination and speed, endurance, and strength and has been used since 2004 to evaluate 11- to 19-y-old Swiss competitive Alpine skiers. The authors analyzed the distribution of 6996 tests performed by 1438 male and 1031 female Alpine skiers between 2004 and 2011 according to the athletes' respective relative age quartiles. Differences in anthropometric measures and performance in physical tests according to quartile were assessed, and the possibility of attenuating eventual RAEs on performance by normalization of results to height and body mass was tested. RESULTS: RAEs were found among all female and male age groups, with no differences between age groups. While performance level did not affect RAE for male skiers, it influenced RAE among female skiers. RAEs also influenced results in all physical tests except upper-limb strength. Normalization of results to body mass attenuated most RAEs identified. CONCLUSION: Small RAEs are present among young Swiss competitive Alpine skiers and should be taken into account in training and selection settings to prevent the waste of possible future talents. When ranking junior athletes according to their performance in physical tests, normalization of results to body mass decreases the bias caused by RAEs.


Athletic Performance/physiology , Skiing/physiology , Adolescent , Age Factors , Body Height , Body Mass Index , Child , Exercise Test , Female , Humans , Male , Retrospective Studies , Young Adult
20.
J Appl Physiol (1985) ; 119(10): 1118-26, 2015 Nov 15.
Article En | MEDLINE | ID: mdl-26384412

The ultrastructure of capillaries in skeletal muscle was morphometrically assessed in vastus lateralis muscle (VL) biopsies taken before and after exercise from 22 participants of two training studies. In study 1 (8 wk of ergometer training), light microscopy revealed capillary-fiber (C/F) ratio (+27%) and capillary density (+16%) to be higher (P ≤ 0.05) in postexercise biopsies than in preexercise biopsies from all 10 participants. In study 2 (6 mo of moderate running), C/F ratio and capillary density were increased (+23% and +20%; respectively, P ≤ 0.05) in VL biopsies from 6 angiogenesis responders (AR) after training, whereas 6 nonangiogenesis responders (NR) showed nonsignificant changes in these structural indicators (-4%/-4%, respectively). Forty capillary profiles per participant were evaluated by point and intersection counting on cross sections after transmission electron microscopy. In study 1, volume density (Vv) and mean arithmetic thickness (T) of endothelial cells (ECs; +19%/+17%, respectively) and pericytes (PCs; +20%/+21%, respectively) were higher (P ≤ 0.05), whereas Vv and T of the pericapillary basement membrane (BM) were -23%/-22% lower (P ≤ 0.05), respectively, in posttraining biopsies. In study 2, exercise-related differences between AR and NR-groups were found for Vv and T of PCs (AR, +26%/+22%, respectively, both P ≤ 0.05; NR, +1%/-3%, respectively, both P > 0.05) and BM (AR, -14%/-13%, respectively, both P ≤ 0.05; NR, -9%/-11%, respectively, P = 0.07/0.10). Vv and T of ECs were higher (AR, +16%/+18%, respectively; NR, +6%/+6%, respectively; all P ≤ 0.05) in both groups. The PC coverage was higher (+13%, P ≤ 0.05) in VL biopsies of individuals in the AR group but nonsignificantly altered (+3%, P > 0.05) in those of the NR group after training. Our study suggests that intensified PC mobilization and BM thinning are related to exercise-induced angiogenesis in human skeletal muscle, whereas training per se induces EC-thickening.


Capillaries/ultrastructure , Exercise/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/ultrastructure , Neovascularization, Physiologic/physiology , Physical Endurance/physiology , Adult , Humans , Male , Muscle, Skeletal/blood supply
...