Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1674, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395951

RESUMEN

The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilación , NAD/metabolismo , Expresión Génica , Fosfatos/metabolismo
2.
FEBS J ; 289(2): 507-518, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314575

RESUMEN

Bradyrhizobium diazoefficiens, a bacterial symbiont of soybean and other leguminous plants, enters a nodulation-promoting genetic programme in the presence of host-produced flavonoids and related signalling compounds. Here, we describe the crystal structure of an isoflavonoid-responsive regulator (FrrA) from Bradyrhizobium, as well as cocrystal structures with inducing and noninducing ligands (genistein and naringenin, respectively). The structures reveal a TetR-like fold whose DNA-binding domain is capable of adopting a range of orientations. A single molecule of either genistein or naringenin is asymmetrically bound in a central cavity of the FrrA homodimer, mainly via C-H contacts to the π-system of the ligands. Strikingly, however, the interaction does not provoke any conformational changes in the repressor. Both the flexible positioning of the DNA-binding domain and the absence of structural change upon ligand binding are corroborated by small-angle X-ray scattering (SAXS) experiments in solution. Together with a model of the promoter-bound state of FrrA our results suggest that inducers act as a wedge, preventing the DNA-binding domains from moving close enough together to interact with successive positions of the major groove of the palindromic operator.


Asunto(s)
Proteínas de Unión al ADN/genética , Flavonoides/genética , Glycine max/genética , Proteínas Ribosómicas/genética , Sitios de Unión/genética , Bradyrhizobium/genética , Bradyrhizobium/patogenicidad , Cristalografía por Rayos X , Proteínas de Unión al ADN/ultraestructura , Flavonoides/biosíntesis , Regulación Bacteriana de la Expresión Génica/genética , Ligandos , Unión Proteica/genética , Conformación Proteica , Proteínas Ribosómicas/ultraestructura , Glycine max/microbiología
3.
Transfusion ; 51(10): 2160-7, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21756260

RESUMEN

BACKGROUND: Severe transfusion-related acute lung injury is often caused by antibodies directed against the human neutrophil alloantigen (HNA)-3a. HNA-3a results from an amino acid exchange (Arg154Gln) in the first extracellular loop of the choline transporter-like protein 2 (CTL2). The characteristics of the binding domain(s) of HNA-3a antibodies are unknown. STUDY DESIGN AND METHODS: For epitope mapping, a library of 23 different HNA-3a (R(154)) and three HNA-3b (Q(154)) peptides covering different parts of the first extracellular loop of CTL2 (aa(55-231)) was synthesized in Escherichia coli and tested by Western blot with two HNA-3a alloantibody-containing plasma samples and by enzyme immunoassay (EIA) with different HNA-3a- (n = 21) and HNA-3b- (n = 1) positive plasma samples. RESULTS: Despite promising Western blot results using highly reactive plasma samples, we found widely varying reactivities of different HNA-3a plasmas in the EIA, with only 11 of 21 HNA-3a antibodies binding to any of the tested HNA-3a peptides and with no peptide recognized by more than nine of the 21 antibodies. The HNA-3b plasma did not react with R(154) peptides in the EIA nor with R(154) or Q(154) peptides in Western blot experiments. Plasma reactivity profiles with the peptides did not correlate with those observed using granulocyte agglutination and granulocyte immunofluorescence tests. CONCLUSION: Binding of HNA-3a alloantibodies depends on the conformation of the intact CTL2 protein and their binding sites may differ substantially. Peptide-based assays for detection of HNA-3a antibodies bear the risk to be insensitive and require systematic validation with a large panel of antibodies.


Asunto(s)
Mapeo Epitopo , Isoanticuerpos/inmunología , Isoantígenos/inmunología , Plasma/inmunología , Transfusión Sanguínea , Western Blotting , Femenino , Humanos , Técnicas para Inmunoenzimas , Isoanticuerpos/química , Isoantígenos/química , Glicoproteínas de Membrana/química , Proteínas de Transporte de Membrana/química , Persona de Mediana Edad
4.
Mol Genet Genomics ; 278(3): 317-30, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17588177

RESUMEN

In the yeast Saccharomyces cerevisiae, structural genes of phospholipid biosynthesis are activated by a heterodimer of basic helix-loop-helix proteins, Ino2 and Ino4, which bind to the inositol/choline-responsive element (ICRE) UAS element. In silico, we identified Candida albicans genes, which encode proteins similar to Ino2 and Ino4 (designated CaIno2 and CaIno4). CaINO4 contains an intron with an unusual branch point sequence. Although neither CaINO2 nor CaINO4 could individually complement S. cerevisiae mutations ino2 and ino4, respectively, coexpression of both CaINO2 and CaINO4 restored inositol auxotrophy of an ino2 ino4 double mutant. CaIno2 and CaIno4 could interact in vivo as well as in vitro and together were able to bind to the ICRE from S. cerevisiae INO1. Similar to Ino2 of S. cerevisiae, CaIno2 contains two transcriptional activation domains. CaIno2 and CaIno4 interact with CaSua7 (basal transcription factor TFIIB) but not with Sua7 from S. cerevisiae. Surprisingly, CaIno2 + CaIno4 were unable to stimulate expression of a CaINO1-lacZ reporter gene while an INO1-lacZ fusion was efficiently activated. This result agrees with the finding that promoter scanning of the CaINO1 upstream region gave no evidence for CaIno2 + CaIno4 binding in vitro. We derived a consensus binding site for CaIno2 + CaIno4 (BWTCASRTG), which could be detected upstream of 25 ribosomal protein genes. Since we failed to obtain homozygous deletion mutations for CaINO2 and CaINO4, we conclude that CaIno2 and CaIno4 acquired new essential target genes among which may be ribosomal protein genes.


Asunto(s)
Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Ribosómicas/genética , Transactivadores/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Modelos Genéticos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/genética , Factor de Transcripción TFIIB/genética , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Yeast ; 22(8): 601-13, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16034810

RESUMEN

The inositol/choline responsive element (ICRE) functions as a UAS element mediating coordinate expression of structural genes required for yeast phospholipid biosynthesis. However, ICRE motifs could be detected upstream of various genes apparently not involved in lipid metabolism. In this work we investigated the expression pattern of selected genes containing ICRE promoter motifs, as identified by in silico analysis (ARG4, ERG20, FAR8, GPD2, RSF1, URA8, VHT1 and YEL073C). It turned out that the presence of an ICRE upstream of a gene of unknown function indeed allows to conclude for regulation by phospholipid precursors, which is mediated by activators Ino2/Ino4 and the repressor Opi1. We also demonstrated in vitro binding of Ino2/Ino4 heterodimers to promoter regions. Thus, our analysis supports the view that identification of regulatory elements by a database search provides evidence for a specific pattern of gene expression. Activation by pathway-specific regulators may suggest a physiological function for as yet uncharacterized genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Fosfolípidos/biosíntesis , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sitios de Unión , Dimerización , Datos de Secuencia Molecular , Proteínas Represoras/química , Proteínas Represoras/genética , Elementos de Respuesta/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
6.
Mol Microbiol ; 48(4): 1119-30, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12753200

RESUMEN

In the yeast Saccharomyces cerevisiae, genes involved in phospholipid biosynthesis are activated by ICRE (inositol/choline-responsive element) up-stream motifs and the corresponding heterodimeric binding factor, Ino2 + Ino4. Both Ino2 and Ino4 contain basic helix-loop-helix (bHLH) domains required for ICRE binding, whereas transcriptional activation is mediated exclusively by Ino2. In this work, we describe a molecular analysis of functional minimal domains responsible for specific DNA recognition and transcriptional activation (TAD1 and TAD2). We also define the importance of individual amino acids within the more important activation domain TAD1. Random mutagenesis at five amino acid positions showed the importance of acidic as well as hydrophobic residues within this minimal TAD. We also investigated the contribution of known general transcription factors and co-activators for Ino2-dependent gene activation. Although an ada5 single mutant and a gal11 paf1 double mutant were severely affected, a partial reduction in activation was found for gcn5 and srb2. Ino2 interacts physically with the basal transcription factor Sua7 (TFIIB of yeast). Interestingly, interaction is mediated by the HLH dimerization domain of Ino2 and by two non-overlapping domains within Sua7. Thus, Sua7 may compete with Ino4 for binding to the Ino2 activator, creating the possibility of positive and negative influence of Sua7 on ICRE-dependent gene expression.


Asunto(s)
Fosfolípidos/biosíntesis , Proteínas Represoras/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIB/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación Fúngica de la Expresión Génica , Genes Reguladores , Mutagénesis , Fosfolípidos/genética , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...