Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Bioorg Med Chem Lett ; 94: 129456, 2023 10 01.
Article En | MEDLINE | ID: mdl-37633618

Disruption of the HBV capsid assembly process through small-molecule interaction with HBV core protein is a validated target for the suppression of hepatitis B viral replication and the development of new antivirals. Through combination of key structural features associated with two distinct series of capsid assembly modulators, a novel aminochroman-based chemotype was identified. Optimization of anti-HBV potency through generation of SAR in addition to further core modifications provided a series of related functionalized aminoindanes. Key compounds demonstrated excellent cellular potency in addition to favorable ADME and pharmacokinetic profiles and were shown to be highly efficacious in a mouse model of HBV replication. Aminoindane derivative AB-506 was subsequently advanced into clinical development.


Antiviral Agents , Capsid Proteins , Capsid , Animals , Mice , Antiviral Agents/pharmacology , Disease Models, Animal , Structure-Activity Relationship , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism
2.
Nature ; 597(7878): 698-702, 2021 09.
Article En | MEDLINE | ID: mdl-34526714

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Animals , Anti-Bacterial Agents/chemistry , Aza Compounds/chemistry , Aza Compounds/pharmacology , Cyclooctanes/chemistry , Cyclooctanes/pharmacology , Female , Mice , Mice, Inbred BALB C , Molecular Structure , Penicillin-Binding Proteins/antagonists & inhibitors , Pseudomonas aeruginosa/drug effects , beta-Lactamases
3.
Protein Sci ; 29(3): 768-778, 2020 03.
Article En | MEDLINE | ID: mdl-31930578

Neisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co-infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng-Ct co-infections. Development of a safe, effective, and inexpensive dual therapy for Ng-Ct co-infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X-ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high-throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.


Chlamydia trachomatis/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Neisseria gonorrhoeae/enzymology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/antagonists & inhibitors , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Humans , Models, Molecular , Recombinant Proteins/metabolism , Structure-Activity Relationship
4.
Sci Rep ; 9(1): 4392, 2019 03 13.
Article En | MEDLINE | ID: mdl-30867460

Thiamine monophosphate kinase (ThiL) catalyzes the last step of thiamine pyrophosphate (TPP) synthesis, the ATP-dependent phosphorylation of thiamine monophosphate (TMP) to thiamine pyrophosphate. We solved the structure of ThiL from the human pathogen A. baumanii in complex with a pair of substrates TMP and a non-hydrolyzable adenosine triphosphate analog, and in complex with a pair of products TPP and adenosine diphosphate. High resolution of the data and anomalous diffraction allows for a detailed description of the binding mode of substrates and products, and their metal environment. The structures further support a previously proposed in-line attack reaction mechanism and show a distinct variability of metal content of the active site.


Acinetobacter baumannii/enzymology , Acinetobacter baumannii/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Catalytic Domain , Crystallization , Thiamine Pyrophosphate/metabolism
5.
Proc Natl Acad Sci U S A ; 110(33): 13374-9, 2013 Aug 13.
Article En | MEDLINE | ID: mdl-23898196

The Ets-Related Gene (ERG) belongs to the Ets family of transcription factors and is critically important for maintenance of the hematopoietic stem cell population. A chromosomal translocation observed in the majority of human prostate cancers leads to the aberrant overexpression of ERG. We have identified regions flanking the ERG Ets domain responsible for autoinhibition of DNA binding and solved crystal structures of uninhibited, autoinhibited, and DNA-bound ERG. NMR-based measurements of backbone dynamics show that uninhibited ERG undergoes substantial dynamics on the millisecond-to-microsecond timescale but autoinhibited and DNA-bound ERG do not. We propose a mechanism whereby the allosteric basis of ERG autoinhibition is mediated predominantly by the regulation of Ets-domain dynamics with only modest structural changes.


DNA-Binding Proteins/chemistry , DNA/metabolism , Models, Molecular , Trans-Activators/chemistry , Allosteric Regulation/physiology , Calorimetry , Cloning, Molecular , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Humans , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Oligonucleotides/genetics , Protein Structure, Tertiary , Spectrum Analysis , Time Factors , Trans-Activators/metabolism , Transcriptional Regulator ERG
6.
Science ; 339(6127): 1600-4, 2013 Mar 29.
Article En | MEDLINE | ID: mdl-23539602

Posttranslational lipidation provides critical modulation of the functions of some proteins. Isoprenoids (i.e., farnesyl or geranylgeranyl groups) are attached to cysteine residues in proteins containing C-terminal CAAX sequence motifs (where A is an aliphatic residue and X is any residue). Isoprenylation is followed by cleavage of the AAX amino acid residues and, in some cases, by additional proteolytic cuts. We determined the crystal structure of the CAAX protease Ste24p, a zinc metalloprotease catalyzing two proteolytic steps in the maturation of yeast mating pheromone a-factor. The Ste24p core structure is a ring of seven transmembrane helices enclosing a voluminous cavity containing the active site and substrate-binding groove. The cavity is accessible to the external milieu by means of gaps between splayed transmembrane helices. We hypothesize that cleavage proceeds by means of a processive mechanism of substrate insertion, translocation, and ejection.


Cell Membrane/enzymology , Membrane Proteins/chemistry , Metalloendopeptidases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Molecular Sequence Data , Protein Structure, Secondary , Substrate Specificity
7.
Biochemistry ; 50(41): 8792-803, 2011 Oct 18.
Article En | MEDLINE | ID: mdl-21894979

In this work, electron paramagnetic resonance (EPR) spectroscopy and X-ray crystallography were used to examine the origins of EPR line shapes from spin-labels at the protein-lipid interface on the ß-barrel membrane protein BtuB. Two atomic-resolution structures were obtained for the methanethiosulfonate spin-label derivatized to cysteines on the membrane-facing surface of BtuB. At one of these sites, position 156, the label side chain resides in a pocket formed by neighboring residues; however, it extends from the protein surface and yields a single-component EPR spectrum in the crystal that results primarily from fast rotation about the fourth and fifth bonds linking the spin-label to the protein backbone. In lipid bilayers, site 156 yields a multicomponent spectrum resulting from different rotameric states of the labeled side chain. Moreover, changes in the lipid environment, such as variations in bilayer thickness, modulate the EPR spectrum by modulating label rotamer populations. At a second site, position 371, the labeled side chain interacts with a pocket on the protein surface, leading to a highly immobilized single-component EPR spectrum that is not sensitive to hydrocarbon thickness. This spectrum is similar to that seen at other sites that are deep in the hydrocarbon, such as position 170. This work indicates that the rotameric states of spin-labels on exposed hydrocarbon sites are sensitive to the environment at the protein-hydrocarbon interface, and that this environment may modulate weak interactions between the labeled side chain and the protein surface. In the case of BtuB, lipid acyl chain packing is not symmetric around the ß-barrel, and EPR spectra from labeled hydrocarbon-facing sites in BtuB may reflect this asymmetry. In addition to facilitating the interpretation of EPR spectra of membrane proteins, these results have important implications for the use of long-range distance restraints in protein structure refinement that are obtained from spin-labels.


Bacterial Outer Membrane Proteins/chemistry , Electron Spin Resonance Spectroscopy/methods , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/chemistry , Binding Sites , Crystallography, X-Ray/methods , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Models, Molecular , Mutagenesis , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Solvents , Spin Labels
9.
Biochemistry ; 49(47): 10045-60, 2010 Nov 30.
Article En | MEDLINE | ID: mdl-20964375

Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.


Amino Acid Transport Systems/chemistry , Bacterial Proteins/chemistry , Cyclic N-Oxides/chemistry , Amino Acid Transport Systems/genetics , Bacterial Proteins/genetics , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary/drug effects , Spin Labels
10.
Biophys J ; 99(5): 1604-10, 2010 Sep 08.
Article En | MEDLINE | ID: mdl-20816073

Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B(12). Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.


Bacterial Outer Membrane Proteins/chemistry , Escherichia coli Proteins/chemistry , Membrane Transport Proteins/chemistry , Models, Molecular , Amino Acid Motifs , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutagenesis , Mutation , Protein Conformation , Protein Folding , Protein Unfolding , Spin Labels , Thermodynamics
11.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 6): 679-84, 2005 Jun.
Article En | MEDLINE | ID: mdl-15930619

Using a high degree of automation, the crystallography core at the Southeast Collaboratory for Structural Genomics (SECSG) has developed a high-throughput protein-to-structure pipeline. Various robots and automation procedures have been adopted and integrated into a pipeline that is capable of screening 40 proteins for crystallization and solving four protein structures per week. This pipeline is composed of three major units: crystallization, structure determination/validation and crystallomics. Coupled with the protein-production cores at SECSG, the protein-to-structure pipeline provides a two-tiered approach for protein production at SECSG. In tier 1, all protein samples supplied by the protein-production cores pass through the pipeline using standard crystallization screening and optimization procedures. The protein targets that failed to yield diffraction-quality crystals (resolution better than 3.0 A) become tier 2 or salvaging targets. The goal of tier 2 target salvaging, carried out by the crystallomics core, is to produce the target proteins with increased purity and homogeneity, which would render them more likely to yield well diffracting crystals. This is performed by alternative purification procedures and/or the introduction of chemical modifications to the proteins (such as tag removal, methylation, surface mutagenesis, selenomethionine labelling etc.). Details of the various procedures in the pipeline for protein crystallization, target salvaging, data collection/processing and high-throughput structure determination/validation, as well as some examples, are described.


Crystallography, X-Ray/methods , Proteins/chemistry , Crystallization , Proteins/isolation & purification
...