Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Allergol Int ; 2024 Jan 28.
Article En | MEDLINE | ID: mdl-38286715

BACKGROUND: Nasal congestion in allergic rhinitis (AR) is caused by vascular hyperpermeability and vascular relaxation of the nasal mucosa. We previously detected high levels of a lipoxygenation metabolite of dihomogammalinolenic acid, 15-hydroxy-8Z,11Z,13E-eicosatrienoic acid (15-HETrE) in the nasal lavage fluid of AR model mice. Here, we investigated the effects of 15-HETrE on vascular functions associated with nasal congestion. METHODS: We measured 15-HETrE levels in the nasal lavage fluid of ovalbumin-induced AR model mice and nasal discharge of patients with AR. We also assessed nasal congestion and vascular relaxation in mice. Vascular contractility was investigated using isolated mouse aortas. RESULTS: Five ovalbumin challenges increased 15-HETrE levels in AR model mice. 15-HETrE was also detected in patients who exhibiting AR-related symptoms. Intranasal administration of 15-HETrE elicited dyspnea-related behavior and decreased the nasal cavity volume in mice. Miles assay and whole-mount immunostaining revealed that 15-HETrE administration caused vascular hyperpermeability and relaxation of the nasal mucosa. Intravital imaging demonstrated that 15-HETrE relaxed the ear vessels that were precontracted via thromboxane receptor stimulation. Moreover, 15-HETrE dilated the isolated mouse aortas, and this effect was attenuated by K+ channel inhibitors and prostaglandin D2 (DP) and prostacyclin (IP) receptor antagonists. Additionally, vasodilatory effects of 15-HETrE were accompanied by an increase in intracellular cAMP levels. CONCLUSIONS: Our results indicate that 15-HETrE, whose levels are elevated in the nasal cavity upon AR, can be a novel lipid mediator that exacerbates nasal congestion. Moreover, it can stimulate DP and IP receptors and downstream K+ channels to dilate the nasal mucosal vasculature.

2.
J Clin Invest ; 134(4)2024 Jan 04.
Article En | MEDLINE | ID: mdl-38175710

Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.


Atherosclerosis , Lipase , Mice , Animals , Triglycerides/metabolism , Lipase/genetics , Lipase/metabolism , Lipolysis , Lipid Metabolism , Endothelium, Vascular/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism
3.
FASEB J ; 37(12): e23310, 2023 12.
Article En | MEDLINE | ID: mdl-38010922

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Actins , rap1 GTP-Binding Proteins , Animals , Mice , Actins/metabolism , Cadherins/metabolism , Capillary Permeability , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
4.
J Lipid Res ; 64(10): 100439, 2023 Oct.
Article En | MEDLINE | ID: mdl-37666361

Normal angiogenesis is essential for retinal development and maintenance of visual function in the eye, and its abnormality can cause retinopathy and other eye diseases. Prostaglandin D2 is an anti-angiogenic lipid mediator produced by lipocalin-type PGD synthase (L-PGDS) or hematopoietic PGD synthase (H-PGDS). However, the exact role of these PGD synthases remains unclear. Therefore, we compared the roles of these synthases in murine retinal angiogenesis under physiological and pathological conditions. On postnatal day (P) 8, the WT murine retina was covered with an elongated vessel. L-PGDS deficiency, but not H-PGDS, reduced the physiological vessel elongation with sprouts increase. L-PGDS expression was observed in endothelial cells and neural cells. In vitro, L-PGDS inhibition increased the hypoxia-induced vascular endothelial growth factor expression in isolated endothelial cells, inhibited by a prostaglandin D2 metabolite, 15-deoxy-Δ12,14 -PGJ2 (15d-PGJ2) treatment. Pericyte depletion, using antiplatelet-derived growth factor receptor-ß antibody, caused retinal hemorrhage with vessel elongation impairment and macrophage infiltration in the WT P8 retina. H-PGDS deficiency promoted hemorrhage but inhibited the impairment of vessel elongation, while L-PGDS did not. In the pericyte-depleted WT retina, H-PGDS was expressed in the infiltrated macrophages. Deficiency of the D prostanoid receptor also inhibited the vessel elongation impairment. These results suggest the endogenous role of L-PGDS signaling in physiological angiogenesis and that of H-PGDS/D prostanoid 1 signaling in pathological angiogenesis.

5.
J Lipid Res ; 64(8): 100411, 2023 08.
Article En | MEDLINE | ID: mdl-37437844

The transcription factor SREBP2 is the main regulator of cholesterol homeostasis and is central to the mechanism of action of lipid-lowering drugs, such as statins, which are responsible for the largest overall reduction in cardiovascular risk and mortality in humans with atherosclerotic disease. Recently, SREBP2 has been implicated in leukocyte innate and adaptive immune responses by upregulation of cholesterol flux or direct transcriptional activation of pro-inflammatory genes. Here, we investigate the role of SREBP2 in endothelial cells (ECs), since ECs are at the interface of circulating lipids with tissues and crucial to the pathogenesis of cardiovascular disease. Loss of SREBF2 inhibits the production of pro-inflammatory chemokines but amplifies type I interferon response genes in response to inflammatory stimulus. Furthermore, SREBP2 regulates chemokine expression not through enhancement of endogenous cholesterol synthesis or lipoprotein uptake but partially through direct transcriptional activation. Chromatin immunoprecipitation sequencing of endogenous SREBP2 reveals that SREBP2 bound to the promoter regions of two nonclassical sterol responsive genes involved in immune modulation, BHLHE40 and KLF6. SREBP2 upregulation of KLF6 was responsible for the downstream amplification of chemokine expression, highlighting a novel relationship between cholesterol homeostasis and inflammatory phenotypes in ECs.


Cytokines , Endothelial Cells , Humans , Transcriptional Activation , Endothelial Cells/metabolism , Cytokines/metabolism , Cholesterol/metabolism , Transcription Factors/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism
6.
Sci Rep ; 12(1): 21754, 2022 12 16.
Article En | MEDLINE | ID: mdl-36526648

Nuclear plant accidents can be a risk for thyroid cancer due to iodine radioisotopes. Near the Fukushima Daiichi nuclear power plant, cattle were exposed to radiation after the accident occurred in May 2011. Here we estimated the total radiation exposure to cattle thyroid and its effects on thyroid function. Until October 2016, the estimated external exposure dose in Farm A was 1416 mGy, while internal exposure dose of 131I, 134Cs, and 137Cs were 85, 8.8, and 9.7 mGy in Farm A and 34, 0.2, and 0.3 mGy in Farm B, respectively. The exposed cattle had thyroid with relatively lower weight and lower level of stable iodine, which did not exhibit any pathological findings. Compared with the control, the plasma level of thyroid-stimulating hormone (TSH) was higher in Farm A cattle born before the accident, while the plasma thyroxine (T4) was higher in Farm A cattle born after the accident, suggesting that exposed cattle showed slight hyperactivation of the thyroid gland. In addition, Farm A cattle have higher level of cortisol, one of the anterior pituitary gland-derived hormones. However, we did not observe a causal relationship between the radiation exposure and cattle thyroid.


Fukushima Nuclear Accident , Radiation Exposure , Cattle , Animals , Nuclear Power Plants , Thyroid Gland/radiation effects , Iodine Radioisotopes/adverse effects , Iodine Radioisotopes/analysis , Radiation Exposure/adverse effects , Japan/epidemiology , Radiation Dosage
7.
FASEB J ; 36(1): e22085, 2022 01.
Article En | MEDLINE | ID: mdl-34888952

Allergic rhinitis (AR) is one of the most common allergic inflammatory diseases worldwide. In AR, increased blood flow and vascular permeability in nasal mucosa cause rhinorrhea and nasal congestion. We investigated the role of an 11Z,14Z-eicosadienoic acid-derived metabolite, 15-hydroxy-11Z,13Z-eicosadienoic acid (15-HEDE), in functional changes in vasculature and nasal congestion in AR. Repeated intranasal administration of Ovalbumin (OVA) caused AR symptoms, such as sneezing and nasal congestion, in mice. OVA administration increased the level of 15-HEDE in nasal lavage fluid, which reached approximately 0.6 ng/ml after ten OVA treatments. Upon measuring vascular contraction, treatment with 0.1-3 µM 15-HEDE did not cause contraction in mouse aortae, while it dilated aortae that were pre-contracted by thromboxane receptor stimulation. Pretreatment with the voltage-gated K+ (KV ) channel inhibitor 4-aminopyridine significantly inhibited the 15-HEDE-induced vascular relaxation. Intravital imaging showed that administration of 1 µg 15-HEDE dilated blood vessels, and Mile's assay demonstrated that this administration also caused dye leakage, indicating vascular hyperpermeability in mouse ears. Computed tomography scanning and morphological study revealed that administration of 3 µg 15-HEDE narrowed nasal passages and thickened nasal mucosa in mice. Finally, we confirmed that treating mice with 3 µg 15-HEDE caused rhinitis symptoms, such as abdominal breathing, and reduced respiratory frequency, suggesting nasal congestion. 15-HEDE caused vasodilation by activating KV channels and increased vascular permeability, which may lead to nasal congestion. Furthermore, 15-HEDE might be a new lipid mediator that exacerbates nasal congestion in AR.


Eicosanoic Acids/toxicity , Nasal Mucosa/immunology , Ovalbumin/toxicity , Rhinitis, Allergic , Administration, Intranasal , Animals , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/immunology , Humans , Male , Mice , Mice, Inbred BALB C , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/immunology
8.
J Immunol ; 207(10): 2545-2550, 2021 11 15.
Article En | MEDLINE | ID: mdl-34615734

Lipocalin-type PG D synthase (L-PGDS) has two roles: it can be a PGD synthase, or it can be a carrier protein of hydrophobic small molecules. In this study, we investigated the dual roles of L-PGDS in acute lung injury by using L-PGDS-deficient and point-mutated mice, which lack PGD2 producibility but maintain lipocalin ability. Hydrochloride (HCl) administration (0.1 M intratracheally for 6 h) caused hemorrhage and dysfunction in the wild-type (WT) mouse lung. These symptoms were accompanied by an increase in PGD2 production. Both deficiency and point mutation of L-PGDS aggravated the HCl-induced hemorrhage and dysfunction. Although both the gene modifications decreased PGD2 production, only L-PGDS-deficient mice, but not point mutation mice, lacked protein expressions of L-PGDS in the lungs. In the WT mice, HCl administration caused pulmonary edema, indexed as an increase in lung water content and protein leakage in bronchoalveolar lavage fluid. L-PGDS deficiency and point mutation similarly aggravated edema formation. HCl administration also stimulated mucin production and bronchoalveolar lavage fluid leukocyte infiltration in the WT mouse lungs. Of interest, L-PGDS deficiency, but not point mutation, exacerbated these manifestations. Consistently, only L-PGDS deficiency increased the mRNA expression of IL-33, which stimulates mucin production in the inflamed lung. These results show that L-PGDS attenuated HCl-induced acute lung injury progresses in two different ways: L-PGDS produced PGD2, which inhibited pulmonary edema formation, whereas its lipocalin ability decreased mucin formation and inflammatory cell infiltration in the inflamed lung.


Acute Lung Injury/metabolism , Intramolecular Oxidoreductases/metabolism , Lipocalins/metabolism , Prostaglandin D2/metabolism , Acute Lung Injury/pathology , Animals , Male , Mice , Mice, Inbred C57BL
9.
FASEB J ; 35(11): e21949, 2021 11.
Article En | MEDLINE | ID: mdl-34591339

Atopic dermatitis (AD) is the most common inflammatory skin disease in children. The serum level of thymus and activation-regulated chemokine (TARC) is a useful AD index to reflect disease severity; however, it requires blood collection from young children. In comparison, urine samples are easier to collect in a pediatric clinical setting. Here, we analyzed the lipids excreted in urine to identify a diagnostic biomarker for AD. We generated a murine dermatitis model by repeated topical application of 2,4-dinitrofluorobenzene (DNFB) or tape-stripping the dorsal skin. Lipid metabolites excreted in the urine were comprehensively analyzed using liquid chromatography-tandem mass spectrometry. To corroborate our findings, we also analyzed urine samples from patients with AD. DNFB application induced AD-like skin lesions, including epidermal thickening, infiltration of eosinophils and T cells, and an increase in Th2 cytokine levels. Assessment of lipids excreted in urine showed a dominance of prostaglandins (PGs), namely, a PGF2α metabolite (13,14-dihydro-15-keto-tetranor-PGF1α ), a PGE2 metabolite (13,14-dihydro-15-keto-tetranor-PGE2 ), and a PGD2 metabolite (13,14-dihydro-15-keto PGJ2 ). mRNA and protein expression of PGF2α , PGE2 , and PGD2 synthase was upregulated in DNFB-treated skin. The tape-stripping model also caused dermatitis but without Th2 inflammation; urine PGF2α and PGD2 metabolite levels remained unaffected. Finally, we confirmed that the urinary levels of the aforementioned PG metabolites, as well as PGI2 metabolite, 6,15-diketo-13,14-dihydro-PGF1α and arachidonic acid metabolite, 17-hydroxyeicosatetraenoic acid (17-HETE) increased in patients with AD. Our data highlights the unique urinary lipid profile in patients with AD, which may provide insight into novel urinary biomarkers for AD diagnosis.


Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/urine , Prostaglandins/urine , Severity of Illness Index , Administration, Cutaneous , Animals , Biomarkers/urine , Child , Child, Preschool , Chromatography, Liquid/methods , Dermatitis, Atopic/chemically induced , Dinitrofluorobenzene/administration & dosage , Dinitrofluorobenzene/adverse effects , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred BALB C , Skin/drug effects , Skin/metabolism , Tandem Mass Spectrometry/methods
10.
Nihon Yakurigaku Zasshi ; 155(6): 395-400, 2020.
Article Ja | MEDLINE | ID: mdl-33132257

In normal condition, vasculature transports only small molecules such as nutrients across vascular wall. When inflammation occurs, inflammatory stimuli increase the permeability of vessel, which induces the extravasation of molecules larger than 40 kDa including plasma proteins. These extravasated molecules cause further inflammation by promoting the infiltration of inflammatory cells and the production of inflammatory mediators. Although it is known that vascular hyper-permeability plays an important role in inflammation, the detailed mechanism of vascular permeability regulation is still unclear. It is known that vascular permeability is controlled by two types of cells: endothelial cells and vascular mural cells. Endothelial cells cover the luminal side of vascular wall in a single layer and form endothelial barrier. Vascular mural cells regulate the blood flow volume of the downstream tissue by contracting or relaxing vascular wall. Endothelial barrier enhancement and vasocontraction suppress the vascular permeability, while endothelial barrier disruption and vasorelaxation promote it. Vascular permeability is regulated by the balance between the response of endothelial cells and vascular mural cells. Prostanoids are cell membrane-derived lipid mediators which bind to each specific G protein-coupled receptor (GPCR), prostanoid receptors. Recently, several studies showed that prostanoids regulate vascular permeability by acting on endothelial cells and/or vascular mural cells. In this review, we would like to describe the role of each prostanoid in vascular permeability by focusing on the characteristics of each specific receptor.


Capillary Permeability , Prostaglandins , Endothelial Cells , Endothelium, Vascular/metabolism , Prostaglandins/metabolism , Vasodilation
11.
J Pathol ; 248(3): 280-290, 2019 07.
Article En | MEDLINE | ID: mdl-30734298

Acute lung injury (ALI) is caused by various stimuli such as acid aspiration and infection, resulting in severe clinical outcomes with high mortality. Prostaglandin D2 (PGD2 ) is a lipid mediator produced in the lungs of patients with ALI. There are two prostaglandin D synthases (PGDS), namely, lipocalin-type PGDS (L-PGDS) and hematopoietic PGDS (H-PGDS). We previously reported the anti-inflammatory role of H-PGDS-derived PGD2 in an endotoxin-induced murine ALI model. Therefore, in this study, we investigated the role of L-PGDS-derived PGD2 in ALI in comparison to H-PGDS-derived PGD2 . Intratracheal administration of HCl caused lung inflammation accompanied by tissue edema and neutrophil accumulation in mouse lungs. The deficiency of both L-PGDS and H-PGDS exacerbated HCl-induced lung dysfunction to a similar extent. Furthermore, a detailed investigation revealed that L-PGDS-derived PGD2 inhibited lung edema, while H-PGDS-derived PGD2 inhibited neutrophil infiltration. Immunostaining showed that inflamed endothelial/epithelial cells express L-PGDS, while macrophages and neutrophils express H-PGDS. Hematopoietic reconstitution with WT bone marrow did not rescue the exacerbated lung edema in L-PGDS deficient mice, indicating the importance of nonhematopoietic endothelial/epithelial cell-expressing L-PGDS for protection against ALI. A modified Miles assay showed that L-PGDS deficiency accelerated vascular hyper-permeability in the inflamed lung, which was suppressed by the stimulation of D prostanoid (DP) receptor, a PGD2 receptor. In vitro, DP agonism enhanced the barrier function of endothelial cells but not epithelial cells. Taken together, our results suggest that in the HCl-induced murine ALI model PGD2 was produced locally by inflamed endothelial and epithelial L-PGDS and this enhanced the endothelial barrier through the DP receptor. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Acute Lung Injury/pathology , Endothelial Cells/metabolism , Pneumonia/pathology , Prostaglandin D2/metabolism , Animals , Capillary Permeability/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophils/metabolism , Neutrophils/pathology
12.
J Lipid Res ; 59(10): 1864-1870, 2018 10.
Article En | MEDLINE | ID: mdl-30076209

Although more than 100 lipid metabolites have been identified, their bioactivities remain unknown. In a previous study, we discovered that the production of several lipid metabolites in the intestines dramatically changed in colitis. Of these metabolites, 5,6-dihydroxyeicosatetraenoic acid (DiHETE) possesses novel anti-inflammatory activity in the vasculature. In this study, we used mouse and human umbilical vein endothelial cell (HUVEC) models to elucidate the mechanisms underlying the vascular activity of lipid metabolites, particularly those related to the release of histamine, a major proinflammatory mediator that stimulates endothelial cells to produce NO, a mediator of vascular relaxation and hyperpermeability, by activating intracellular Ca2+ concentration-dependent signaling. In a mouse ear, the administration of 5,6-DiHETE did not induce inflammatory reactions, and pretreatment with 5,6-DiHETE inhibited histamine-induced inflammation, specifically vascular dilation and hyperpermeability. In an isolated mouse aorta, 5,6-DiHETE treatment did not influence vascular contraction but attenuated acetylcholine-induced vascular relaxation. In HUVECs, treatment with 5,6-DiHETE inhibited histamine-induced endothelial barrier disruption and inhibited the production of NO. Most notably, 5,6-DiHETE inhibited histamine-induced increases in intracellular Ca2+ concentrations in HUVECs. Our findings suggest that 5,6-DiHETE attenuates vascular hyperpermeability during inflammation by inhibiting endothelial Ca2+ elevation, which might lead to a novel pharmacological strategy against inflammatory diseases.


Aorta/drug effects , Aorta/metabolism , Calcium/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Animals , Aorta/cytology , Aorta/physiology , Histamine/pharmacology , Humans , Hydroxyeicosatetraenoic Acids/chemistry , Male , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type III/metabolism , Permeability/drug effects , Phosphorylation/drug effects , Vasoconstriction/drug effects
13.
Sci Rep ; 6: 32109, 2016 08 26.
Article En | MEDLINE | ID: mdl-27562142

Thromboxane A2 (TXA2) is produced in the lungs of patients suffering from acute lung injury (ALI). We assessed its contribution in disease progression using three different ALI mouse models. The administration of hydrochloric acid (HCl) or oleic acid (OA)+ lipopolysaccharide (LPS) caused tissue edema and neutrophil infiltration with TXA2 production in the lungs of the experimental mice. The administration of LPS induced only neutrophil accumulation without TXA2 production. Pretreatment with T prostanoid receptor (TP) antagonist attenuated the tissue edema but not neutrophil infiltration in these models. Intravital imaging and immunostaining demonstrated that administration of TP agonist caused vascular hyper-permeability by disrupting the endothelial barrier formation in the mouse ear. In vitro experiments showed that TP-stimulation disrupted the endothelial adherens junction, and it was inhibited by Ca(2+) channel blockade or Rho kinase inhibition. Thus endogenous TXA2 exacerbates ALI, and its blockade attenuates it by modulating the extent of lung edema. This can be explained by the endothelial hyper-permeability caused by the activation of TXA2-TP axis, via Ca(2+)- and Rho kinase-dependent signaling.


Acute Lung Injury/metabolism , Pulmonary Edema/metabolism , Thromboxane A2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Hydrochloric Acid/toxicity , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred BALB C , Neutrophil Infiltration/drug effects , Neutrophils/metabolism , Neutrophils/pathology , Oleic Acid/toxicity , Pulmonary Edema/chemically induced , Pulmonary Edema/pathology
...