Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(34): e202218783, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37162386

RESUMEN

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Pliegue de Proteína
2.
Angew Chem Weinheim Bergstr Ger ; 135(34): e202218783, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515502

RESUMEN

The ß-barrel assembly machinery (BAM complex) is essential for outer membrane protein (OMP) folding in Gram-negative bacteria, and represents a promising antimicrobial target. Several conformational states of BAM have been reported, but all have been obtained under conditions which lack the unique features and complexity of the outer membrane (OM). Here, we use Pulsed Electron-Electron Double Resonance (PELDOR, or DEER) spectroscopy distance measurements to interrogate the conformational ensemble of the BAM complex in E. coli cells. We show that BAM adopts a broad ensemble of conformations in the OM, while in the presence of the antibiotic darobactin B (DAR-B), BAM's conformational equilibrium shifts to a restricted ensemble consistent with the lateral closed state. Our in-cell PELDOR findings are supported by new cryoEM structures of BAM in the presence and absence of DAR-B. This work demonstrates the utility of PELDOR to map conformational changes in BAM within its native cellular environment.

3.
Cell ; 185(7): 1107-1109, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35325591

RESUMEN

How do bacteria assemble transmembrane ß-barrels into their outer membrane in the absence of an energy source? New structures and experiments from Doyle et al. suggest that the ß-barrel assembly machinery (BAM) co-opts the power of membrane elastic tension to help complete the folding of ß-barrel outer membrane proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Bacterias/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Pliegue de Proteína
4.
Nat Commun ; 12(1): 4174, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234105

RESUMEN

The folding of ß-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the ß-barrel assembly machinery (BAM). How lateral opening in the ß-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrolasas/metabolismo , Liposomas/metabolismo , Pliegue de Proteína , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/ultraestructura , Hidrolasas/genética , Hidrolasas/aislamiento & purificación , Hidrolasas/ultraestructura , Metabolismo de los Lípidos , Liposomas/ultraestructura , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Proteolípidos/metabolismo , Proteolípidos/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
5.
Science ; 371(6531)2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33602829

RESUMEN

Transmembrane ß-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow ß-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.


Asunto(s)
Simulación por Computador , Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica en Lámina beta , Ingeniería de Proteínas , Secuencia de Aminoácidos , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos , Espectroscopía de Resonancia Magnética , Membranas Artificiales , Micelas , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica
6.
Commun Biol ; 3(1): 766, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318620

RESUMEN

The ß-barrel assembly machinery (BAM) catalyses the folding and insertion of ß-barrel outer membrane proteins (OMPs) into the outer membranes of Gram-negative bacteria by mechanisms that remain unclear. Here, we present an ensemble of cryoEM structures of the E. coli BamABCDE (BAM) complex in lipid nanodiscs, determined using multi-body refinement techniques. These structures, supported by single-molecule FRET measurements, describe a range of motions in the BAM complex, mostly localised within the periplasmic region of the major subunit BamA. The ß-barrel domain of BamA is in a 'lateral open' conformation in all of the determined structures, suggesting that this is the most energetically favourable species in this bilayer. Strikingly, the BAM-containing lipid nanodisc is deformed, especially around BAM's lateral gate. This distortion is also captured in molecular dynamics simulations, and provides direct structural evidence for the lipid 'disruptase' activity of BAM, suggested to be an important part of its functional mechanism.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Membrana Dobles de Lípidos , Lípidos , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Nanoestructuras , Multimerización de Proteína , Proteínas de la Membrana Bacteriana Externa/metabolismo , Catálisis , Complejos Multiproteicos/metabolismo , Conformación Proteica , Pliegue de Proteína , Proteolípidos/metabolismo
7.
J Biol Chem ; 295(30): 10340-10367, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32499369

RESUMEN

ß-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Pliegue de Proteína , Multimerización de Proteína/fisiología
8.
Nat Commun ; 11(1): 2155, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358557

RESUMEN

The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Sitios de Unión , Proteínas Portadoras/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Espectrometría de Masas , Chaperonas Moleculares/genética , Isomerasa de Peptidilprolil/genética , Unión Proteica
9.
Angew Chem Int Ed Engl ; 57(51): 16688-16692, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30393918

RESUMEN

Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).


Asunto(s)
Reactivos de Enlaces Cruzados/química , Cisteína/química , Mesilatos/química , Mapas de Interacción de Proteínas , Proteínas/química , Espectrometría de Masas , Estructura Molecular , Procesos Fotoquímicos
10.
Biochem Soc Trans ; 44(3): 802-9, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284045

RESUMEN

Great strides into understanding protein folding have been made since the seminal work of Anfinsen over 40 years ago, but progress in the study of membrane protein folding has lagged behind that of their water soluble counterparts. Researchers in these fields continue to turn to more advanced techniques such as NMR, mass spectrometry, molecular dynamics (MD) and single molecule methods to interrogate how proteins fold. Our understanding of ß-barrel outer membrane protein (OMP) folding has benefited from these advances in the last decade. This class of proteins must traverse the periplasm and then insert into an asymmetric lipid membrane in the absence of a chemical energy source. In this review we discuss old, new and emerging techniques used to examine the process of OMP folding and biogenesis in vitro and describe some of the insights and new questions these techniques have revealed.


Asunto(s)
Bacterias/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Técnicas de Química Analítica/métodos , Simulación por Computador , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA