Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 12(1): 1132, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064157

RESUMEN

Leptospirosis is a global zoonotic disease caused by pathogenic bacteria of the genus Leptospira. We sought to determine if rodents in U.S. Virgin Islands (USVI) are carriers of Leptospira. In total, 140 rodents were sampled, including 112 Mus musculus and 28 Rattus rattus. A positive carrier status was identified for 64/140 (45.7%); 49 (35.0%) were positive by dark-field microscopy, 60 (42.9%) by culture, 63 (45.0%) by fluorescent antibody testing, and 61 (43.6%) by real-time polymerase chain reaction (rtPCR). Molecular typing indicated that 48 isolates were L. borgpetersenii and 3 were L. kirschneri; the remaining nine comprised mixed species. In the single culture-negative sample that was rtPCR positive, genotyping directly from the kidney identified L. interrogans. Serotyping of L. borgpetersenii isolates identified serogroup Ballum and L. kirschneri isolates as serogroup Icterohaemorrhagiae. These results demonstrate that rodents are significant Leptospira carriers and adds to understanding the ecoepidemiology of leptospirosis in USVI.


Asunto(s)
Portador Sano/epidemiología , Reservorios de Enfermedades/microbiología , Leptospira/aislamiento & purificación , Leptospirosis/veterinaria , Enfermedades de los Roedores/epidemiología , Animales , Portador Sano/diagnóstico , Portador Sano/microbiología , Portador Sano/transmisión , Femenino , Humanos , Leptospira/genética , Leptospirosis/epidemiología , Leptospirosis/microbiología , Leptospirosis/transmisión , Masculino , Ratones , Tipificación Molecular , Salud Pública , Ratas , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/microbiología , Enfermedades de los Roedores/transmisión , Islas Virgenes de los Estados Unidos/epidemiología , Zoonosis
2.
Trop Med Infect Dis ; 6(2)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073665

RESUMEN

From 2019-2020, the Virgin Islands Department of Health (VIDOH) investigated potential animal reservoirs of Leptospira spp., the pathogenic bacteria that cause leptospirosis. We examined Leptospira exposure and carriage in livestock on the island of St. Croix, United States Virgin Islands (USVI). We utilized the microscopic agglutination test (MAT) to evaluate the sera, and the fluorescent antibody test (FAT), real time polymerase chain reaction (rt-PCR), and bacterial culture to evaluate urine specimens from livestock (n = 126): 28 cattle, 19 goats, 46 pigs, and 33 sheep. Seropositivity was 37.6% (47/125) with agglutinating antibodies to the following serogroups identified: Australis, Djasiman, Icterohaemorrhagiae, Ballum, Sejroe, Cynopteri, Autumnalis, Hebdomadis, Pomona, Canicola, Grippotyphosa, and Pyrogenes. Urine from 4 animals (4.0%, 4/101) was positive by rt-PCR for lipL32: 2 sheep, 1 goat, and 1 bull. Sequencing of secY amplicons identified L. interrogans in 1 sheep and 1 bull. Livestock in USVI harbor pathogenic Leptospira bacteria and could play a role in the zoonotic cycle of leptospirosis.

3.
Plos Negl Trop Dis, v. 15, n. 4, e0009320, abr. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3656

RESUMEN

Background: Leptospirosis is a zoonotic, bacterial disease, posing significant health risks to humans, livestock, and companion animals around the world. Symptoms range from asymptomatic to multi-organ failure in severe cases. Complex species-specific interactions exist between animal hosts and the infecting species, serovar, and strain of pathogen. Leptospira borgpetersenii serovar Hardjo strains HB203 and JB197 have a high level of genetic homology but cause different clinical presentation in the hamster model of infection; HB203 colonizes the kidney and presents with chronic shedding while JB197 causes severe organ failure and mortality. This study examines the transcriptome of L. borgpetersenii and characterizes differential gene expression profiles of strains HB203 and JB197 cultured at temperatures during routine laboratory conditions (29°C) and encountered during host infection (37°C). Methodology/Principal findings: L. borgpetersenii serovar Hardjo strains JB197 and HB203 were isolated from the kidneys of experimentally infected hamsters and maintained at 29°C and 37°C. RNAseq revealed distinct gene expression profiles; 440 genes were differentially expressed (DE) between JB197 and HB203 at 29°C, and 179 genes were DE between strains at 37°C. Comparison of JB197 cultured at 29°C and 37°C identified 135 DE genes while 41 genes were DE in HB203 with those same culture conditions. The consistent DE of ligB, which encodes the outer membrane virulence factor LigB, was validated by immunoblotting and 2D-DIGE. Differential expression of lipopolysaccharide was also observed between JB197 and HB203. Conclusions/Significance: Investigation of the L. borgpetersenii JB197 and HB203 transcriptome provides unique insight into the mechanistic differences between acute and chronic disease. Characterizing the nuances of strain to strain differences and investigating the environmental sensitivity of Leptospira to temperature is critical to the development and progress of leptospirosis prevention and treatment technologies, and is an important consideration when serovars are selected and propagated for use as bacterin vaccines as well as for the identification of novel therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA