Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Infect Dis ; 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38330449

Invasive fungal pathogen Candida auris has become a public health threat causing outbreaks of high mortality infections. Drug resistance often limits treatment options. For Candida albicans, subinhibitory concentrations of echinocandins unmask immunostimulatory ß-glucan, augmenting immunity. Here we analyze the impact of echinocandin treatment of C. auris on ß-glucan exposure and human neutrophil interactions. We show subinhibitory concentrations lead to minimal glucan unmasking and only subtle influences on neutrophil functions for the isolates belonging to circulating clades. The data suggest that echinocandin treatment will not largely alter phagocytic responses. Glucan masking pathways appear to differ between C. auris and C. albicans.

2.
PLoS Pathog ; 19(12): e1011843, 2023 Dec.
Article En | MEDLINE | ID: mdl-38127686

Candida auris recently emerged as an urgent public health threat, causing outbreaks of invasive infections in healthcare settings throughout the world. This fungal pathogen persists on the skin of patients and on abiotic surfaces despite antiseptic and decolonization attempts. The heightened capacity for skin colonization and environmental persistence promotes rapid nosocomial spread. Following skin colonization, C. auris can gain entrance to the bloodstream and deeper tissues, often through a wound or an inserted medical device, such as a catheter. C. auris possesses a variety of virulence traits, including the capacity for biofilm formation, production of adhesins and proteases, and evasion of innate immune responses. In this review, we highlight the interactions of C. auris with the host, emphasizing the intersection of laboratory studies and clinical observations.


Candida , Candidiasis , Humans , Candidiasis/microbiology , Virulence , Candida auris , Disease Outbreaks , Antifungal Agents
3.
mSphere ; 6(3): e0040621, 2021 06 30.
Article En | MEDLINE | ID: mdl-34160238

Candida auris, a recently emergent fungal pathogen, has caused invasive infections in health care settings worldwide. Mortality rates approach 60% and hospital spread poses a public health threat. Compared to other Candida spp., C. auris avoids triggering the antifungal activity of neutrophils, innate immune cells that are critical for responding to many invasive fungal infections, including candidiasis. However, the mechanism underpinning this immune evasion has been largely unknown. Here, we show that C. auris cell wall mannosylation contributes to the evasion of neutrophils ex vivo and in a zebrafish infection model. Genetic disruption of mannosylation pathways (PMR1 and VAN1) diminishes the outer cell wall mannan, unmasks immunostimulatory components, and promotes neutrophil engagement, phagocytosis, and killing. Upon examination of these pathways in other Candida spp. (Candida albicans and Candida glabrata), we did not find an impact on neutrophil interactions. These studies show how C. auris mannosylation contributes to neutrophil evasion though pathways distinct from other common Candida spp. The findings shed light on innate immune evasion for this emerging pathogen. IMPORTANCE The emerging fungal pathogen Candida auris presents a global public health threat. Therapeutic options are often limited for this frequently drug-resistant pathogen, and mortality rates for invasive disease are high. Previous study has demonstrated that neutrophils, leukocytes critical for the antifungal host defense, do not efficiently recognize and kill C. auris. Here, we show how the outer cell wall of C. auris promotes immune evasion. Disruption of this mannan polysaccharide layer renders C. auris susceptible to neutrophil killing ex vivo and in a zebrafish model of invasive candidiasis. The role of these mannosylation pathways for neutrophil evasion appears divergent from other common Candida species.


Candida albicans/immunology , Candida auris/immunology , Candida auris/metabolism , Candida glabrata/immunology , Cell Wall/metabolism , Immune Evasion , Mannans/metabolism , Neutrophils/immunology , Animals , Candida auris/genetics , Candida auris/pathogenicity , Neutrophils/microbiology , Phagocytosis , Virulence , Zebrafish/microbiology
4.
Curr Clin Microbiol Rep ; 7(3): 51-56, 2020 Sep.
Article En | MEDLINE | ID: mdl-33178552

PURPOSE OF REVIEW: Emergent fungal pathogen C. auris is spreading in hospitals throughout the world and mortality rates for patients with invasive disease approach 60%. This species exhibits a heightened capacity to colonize skin, persist on hospital surfaces, rapidly disseminate in healthcare settings, and resist antifungal therapy. RECENT FINDINGS: Current investigations show that C. auris produces biofilms, surface-adherent communities that resist antifungals and withstand desiccation. These biofilms form when C. auris is growing on skin or in conditions expected in the hospital environment and on implanted medical devices. SUMMARY: Here we will highlight the topic of biofilm formation by C. auris. We illustrate how this process influences resistance to antimicrobials and promotes nosocomial transmission.

5.
mSphere ; 5(1)2020 01 22.
Article En | MEDLINE | ID: mdl-31969479

Emerging pathogen Candida auris causes nosocomial outbreaks of life-threatening invasive candidiasis. It is unclear how this species colonizes skin and spreads in health care facilities. Here, we analyzed C. auris growth in synthetic sweat medium designed to mimic axillary skin conditions. We show that C. auris demonstrates a high capacity for biofilm formation in this milieu, well beyond that observed for the most commonly isolated Candida sp., Candida albicans The C. auris biofilms persist in environmental conditions expected in the hospital setting. To model C. auris skin colonization, we designed an ex vivo porcine skin model. We show that C. auris proliferates on porcine skin in multilayer biofilms. This capacity to thrive in skin niche conditions helps explain the propensity of C. auris to colonize skin, persist on medical devices, and rapidly spread in hospitals. These studies provide clinically relevant tools to further characterize this important growth modality.IMPORTANCE The emerging fungal pathogen Candida auris causes invasive infections and is spreading in hospitals worldwide. Why this species exhibits the capacity to transfer efficiently among patients is unknown. Our findings reveal that C. auris forms high-burden biofilms in conditions mimicking sweat on the skin surface. These adherent biofilm communities persist in environmental conditions expected in the hospital setting. Using a pig skin model, we show that C. auris also forms high-burden biofilm structures on the skin surface. Identification of this mode of growth sheds light on how this recently described pathogen persists in hospital settings and spreads among patients.


Biofilms/growth & development , Candida/physiology , Skin/microbiology , Sweat/microbiology , Animals , Candida/pathogenicity , In Vitro Techniques , Sweat/chemistry , Swine
...