Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
EMBO Rep ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38769420

Canonical RNA interference (RNAi) is sequence-specific mRNA degradation guided by small interfering RNAs (siRNAs) made by RNase III Dicer from long double-stranded RNA (dsRNA). RNAi roles include gene regulation, antiviral immunity or defense against transposable elements. In mammals, RNAi is constrained by Dicer's adaptation to produce another small RNA class-microRNAs. However, a truncated Dicer isoform (ΔHEL1) supporting RNAi exists in mouse oocytes. A homozygous mutation to express only the truncated ΔHEL1 variant causes dysregulation of microRNAs and perinatal lethality in mice. Here, we report the phenotype and canonical RNAi activity in DicerΔHEL1/wt mice, which are viable, show minimal miRNome changes, but their endogenous siRNA levels are an order of magnitude higher. We show that siRNA production in vivo is limited by available dsRNA, but not by Protein kinase R, a dsRNA sensor of innate immunity. dsRNA expression from a transgene yields sufficient siRNA levels to induce efficient RNAi in heart and muscle. DicerΔHEL1/wt mice with enhanced canonical RNAi offer a platform for examining potential and limits of mammalian RNAi in vivo.

2.
Nucleic Acids Res ; 51(22): 12076-12091, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37950888

Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.


Embryonic Development , Oocytes , Protein Biosynthesis , Gene Expression Regulation, Developmental , Meiosis , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Mice
3.
BMC Biol ; 20(1): 272, 2022 12 08.
Article En | MEDLINE | ID: mdl-36482406

BACKGROUND: Genes, principal units of genetic information, vary in complexity and evolutionary history. Less-complex genes (e.g., long non-coding RNA (lncRNA) expressing genes) readily emerge de novo from non-genic sequences and have high evolutionary turnover. Genesis of a gene may be facilitated by adoption of functional genic sequences from retrotransposon insertions. However, protein-coding sequences in extant genomes rarely lack any connection to an ancestral protein-coding sequence. RESULTS: We describe remarkable evolution of the murine gene D6Ertd527e and its orthologs in the rodent Muroidea superfamily. The D6Ertd527e emerged in a common ancestor of mice and hamsters most likely as a lncRNA-expressing gene. A major contributing factor was a long terminal repeat (LTR) retrotransposon insertion carrying an oocyte-specific promoter and a 5' terminal exon of the gene. The gene survived as an oocyte-specific lncRNA in several extant rodents while in some others the gene or its expression were lost. In the ancestral lineage of Mus musculus, the gene acquired protein-coding capacity where the bulk of the coding sequence formed through CAG (AGC) trinucleotide repeat expansion and duplications. These events generated a cytoplasmic serine-rich maternal protein. Knock-out of D6Ertd527e in mice has a small but detectable effect on fertility and the maternal transcriptome. CONCLUSIONS: While this evolving gene is not showing a clear function in laboratory mice, its documented evolutionary history in Muroidea during the last ~ 40 million years provides a textbook example of how a several common mutation events can support de novo gene formation, evolution of protein-coding capacity, as well as gene's demise.


Muridae , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics
4.
Mol Cell ; 82(21): 4064-4079.e13, 2022 11 03.
Article En | MEDLINE | ID: mdl-36332606

MicroRNA (miRNA) and RNA interference (RNAi) pathways rely on small RNAs produced by Dicer endonucleases. Mammalian Dicer primarily supports the essential gene-regulating miRNA pathway, but how it is specifically adapted to miRNA biogenesis is unknown. We show that the adaptation entails a unique structural role of Dicer's DExD/H helicase domain. Although mice tolerate loss of its putative ATPase function, the complete absence of the domain is lethal because it assures high-fidelity miRNA biogenesis. Structures of murine Dicer•-miRNA precursor complexes revealed that the DExD/H domain has a helicase-unrelated structural function. It locks Dicer in a closed state, which facilitates miRNA precursor selection. Transition to a cleavage-competent open state is stimulated by Dicer-binding protein TARBP2. Absence of the DExD/H domain or its mutations unlocks the closed state, reduces substrate selectivity, and activates RNAi. Thus, the DExD/H domain structurally contributes to mammalian miRNA biogenesis and underlies mechanistical partitioning of miRNA and RNAi pathways.


MicroRNAs , Ribonuclease III , Mice , Animals , Ribonuclease III/metabolism , RNA Interference , MicroRNAs/genetics , MicroRNAs/metabolism , Carrier Proteins/metabolism , Mammals/metabolism
5.
EMBO Rep ; 23(2): e53514, 2022 02 03.
Article En | MEDLINE | ID: mdl-34866300

miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here, we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to the porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.


MicroRNAs , Animals , Cattle , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/metabolism , Oogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Zygote/metabolism
6.
Nat Cell Biol ; 23(9): 992-1001, 2021 09.
Article En | MEDLINE | ID: mdl-34489573

PIWI-interacting RNAs (piRNAs) support the germline by suppressing retrotransposons. Studies of the pathway in mice have strongly shaped the view that mammalian piRNAs are essential for male but not for female fertility. Here, we report that the role of the piRNA pathway substantially differs in golden hamsters (Mesocricetus auratus), the piRNA pathway setup of which more closely resembles that of other mammals, including humans. The loss of the Mov10l1 RNA helicase-an essential piRNA biogenesis factor-leads to striking phenotypes in both sexes. In contrast to mice, female Mov10l1-/- hamsters are sterile because their oocytes do not sustain zygotic development. Furthermore, Mov10l1-/- male hamsters have impaired establishment of spermatogonia accompanied by transcriptome dysregulation and an expression surge of a young retrotransposon subfamily. Our results show that the mammalian piRNA pathway has essential roles in both sexes and its adaptive nature allows it to manage emerging genomic threats and acquire new critical roles in the germline.


Oocytes/metabolism , RNA, Small Interfering/genetics , Spermatogenesis/physiology , Spermatogonia/pathology , Animals , Cricetinae , Gene Silencing/physiology , Male , Mesocricetus/metabolism , Oocytes/pathology , RNA Helicases/genetics , Retroelements/physiology , Spermatogenesis/genetics , Spermatogonia/metabolism , Testis/metabolism
7.
Nucleic Acids Res ; 48(14): 8050-8062, 2020 08 20.
Article En | MEDLINE | ID: mdl-32609824

MicroRNAs (miRNAs) are ubiquitous small RNAs guiding post-transcriptional gene repression in countless biological processes. However, the miRNA pathway in mouse oocytes appears inactive and dispensable for development. We propose that marginalization of the miRNA pathway activity stems from the constraints and adaptations of RNA metabolism elicited by the diluting effects of oocyte growth. We report that miRNAs do not accumulate like mRNAs during the oocyte growth because miRNA turnover has not adapted to it. The most abundant miRNAs total tens of thousands of molecules in growing (∅ 40 µm) and fully grown (∅ 80 µm) oocytes, a number similar to that observed in much smaller fibroblasts. The lack of miRNA accumulation results in a 100-fold lower miRNA concentration in fully grown oocytes than in somatic cells. This brings a knock-down-like effect, where diluted miRNAs engage targets but are not abundant enough for significant repression. Low-miRNA concentrations were observed in rat, hamster, porcine and bovine oocytes, arguing that miRNA inactivity is not mouse-specific but a common mammalian oocyte feature. Injection of 250,000 miRNA molecules was sufficient to restore reporter repression in mouse and porcine oocytes, suggesting that miRNA inactivity comes from low-miRNA abundance and not from some suppressor of the pathway.


MicroRNAs/genetics , Oocytes/metabolism , Oogenesis , 3T3 Cells , Animals , Cattle , Cells, Cultured , Cricetinae , Female , Gene Expression Regulation, Developmental , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Models, Theoretical , Oocytes/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Species Specificity , Swine
8.
Nucleic Acids Res ; 48(6): 3211-3227, 2020 04 06.
Article En | MEDLINE | ID: mdl-31956907

Tens of thousands of rapidly evolving long non-coding RNA (lncRNA) genes have been identified, but functions were assigned to relatively few of them. The lncRNA contribution to the mouse oocyte physiology remains unknown. We report the evolutionary history and functional analysis of Sirena1, the most expressed lncRNA and the 10th most abundant poly(A) transcript in mouse oocytes. Sirena1 appeared in the common ancestor of mouse and rat and became engaged in two different post-transcriptional regulations. First, antisense oriented Elob pseudogene insertion into Sirena1 exon 1 is a source of small RNAs targeting Elob mRNA via RNA interference. Second, Sirena1 evolved functional cytoplasmic polyadenylation elements, an unexpected feature borrowed from translation control of specific maternal mRNAs. Sirena1 knock-out does not affect fertility, but causes minor dysregulation of the maternal transcriptome. This includes increased levels of Elob and mitochondrial mRNAs. Mitochondria in Sirena1-/- oocytes disperse from the perinuclear compartment, but do not change in number or ultrastructure. Taken together, Sirena1 contributes to RNA interference and mitochondrial aggregation in mouse oocytes. Sirena1 exemplifies how lncRNAs stochastically engage or even repurpose molecular mechanisms during evolution. Simultaneously, Sirena1 expression levels and unique functional features contrast with the lack of functional importance assessed under laboratory conditions.


Mitochondria/genetics , Oocytes/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Mitochondrial/genetics , Animals , Gene Knockout Techniques , Mice , Mitochondria/ultrastructure , Oocytes/growth & development , Oocytes/ultrastructure , Polyadenylation/genetics , Rats , Transcriptome/genetics
9.
PLoS Genet ; 15(12): e1008261, 2019 12.
Article En | MEDLINE | ID: mdl-31860668

Germline genome defense evolves to recognize and suppress retrotransposons. One of defensive mechanisms is the PIWI-associated RNA (piRNA) pathway, which employs small RNAs for sequence-specific repression. The loss of the piRNA pathway in mice causes male sterility while females remain fertile. Unlike spermatogenic cells, mouse oocytes posses also RNA interference (RNAi), another small RNA pathway capable of retrotransposon suppression. To examine whether RNAi compensates the loss of the piRNA pathway, we produced a new RNAi pathway mutant DicerSOM and crossed it with a catalytically-dead mutant of Mili, an essential piRNA gene. Normal follicular and oocyte development in double mutants showed that RNAi does not suppress a strong ovarian piRNA knock-out phenotype. However, we observed redundant and non-redundant targeting of specific retrotransposon families illustrating stochasticity of recognition and targeting of invading retrotransposons. Intracisternal A Particle retrotransposon was mainly targeted by the piRNA pathway, MaLR and RLTR10 retrotransposons were targeted mainly by RNAi. Double mutants showed accumulations of LINE-1 retrotransposon transcripts. However, we did not find strong evidence for transcriptional activation and mobilization of retrotransposition competent LINE-1 elements suggesting that while both defense pathways are simultaneously expendable for ovarian oocyte development, yet another transcriptional silencing mechanism prevents mobilization of LINE-1 elements.


Oocytes/growth & development , RNA Interference , RNA, Small Interfering/genetics , Retroelements , Animals , Argonaute Proteins/genetics , DEAD-box RNA Helicases/genetics , Female , Mice , Mutation , Oocytes/chemistry , Ribonuclease III/genetics , Signal Transduction
10.
Life Sci Alliance ; 2(1)2019 02.
Article En | MEDLINE | ID: mdl-30808654

RNAi is the sequence-specific mRNA degradation guided by siRNAs produced from long dsRNA by RNase Dicer. Proteins executing RNAi are present in mammalian cells but rather sustain the microRNA pathway. Aiming for a systematic analysis of mammalian RNAi, we report here that the main bottleneck for RNAi efficiency is the production of functional siRNAs, which integrates Dicer activity, dsRNA structure, and siRNA targeting efficiency. Unexpectedly, increased expression of Dicer cofactors TARBP2 or PACT reduces RNAi but not microRNA function. Elimination of protein kinase R, a key dsRNA sensor in the interferon response, had minimal positive effects on RNAi activity in fibroblasts. Without high Dicer activity, RNAi can still occur when the initial Dicer cleavage of the substrate yields an efficient siRNA. Efficient mammalian RNAi may use substrates with some features of microRNA precursors, merging both pathways even more than previously suggested. Although optimized endogenous Dicer substrates mimicking miRNA features could evolve for endogenous regulations, the same principles would make antiviral RNAi inefficient as viruses would adapt to avoid efficacy.


RNA Interference/physiology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , Animals , Base Sequence/genetics , Carrier Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Gene Knockout Techniques , Mice , MicroRNAs/metabolism , NIH 3T3 Cells , Plasmids/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Ribonuclease III/metabolism , Transfection , eIF-2 Kinase/genetics
11.
Life Sci Alliance ; 1(4): e201800084, 2018 Aug.
Article En | MEDLINE | ID: mdl-30456367

Removal of poly(A) tail is an important mechanism controlling eukaryotic mRNA turnover. The major eukaryotic deadenylase complex CCR4-NOT contains two deadenylase components, CCR4 and CAF1, for which mammalian CCR4 is encoded by Cnot6 or Cnot6l paralogs. We show that Cnot6l apparently supplies the majority of CCR4 in the maternal CCR4-NOT in mouse, hamster, and bovine oocytes. Deletion of Cnot6l yielded viable mice, but Cnot6l -/- females exhibited ∼40% smaller litter size. The main onset of the phenotype was post-zygotic: fertilized Cnot6l -/- eggs developed slower and arrested more frequently than Cnot6l +/- eggs, suggesting that maternal CNOT6L is necessary for accurate oocyte-to-embryo transition. Transcriptome analysis revealed major transcriptome changes in Cnot6l -/- ovulated eggs and one-cell zygotes. In contrast, minimal transcriptome changes in preovulatory Cnot6l -/- oocytes were consistent with reported Cnot6l mRNA dormancy. A minimal overlap between transcripts sensitive to decapping inhibition and Cnot6l loss suggests that decapping and CNOT6L-mediated deadenylation selectively target distinct subsets of mRNAs during oocyte-to-embryo transition in mouse.

12.
Genome Res ; 27(8): 1384-1394, 2017 08.
Article En | MEDLINE | ID: mdl-28522611

Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.


Evolution, Molecular , Gene Expression Regulation , Oocytes/metabolism , Retroelements , Terminal Repeat Sequences , Zygote/metabolism , Animals , Cattle , Cricetinae , Endogenous Retroviruses , Humans , Mice , Oocytes/cytology , Promoter Regions, Genetic , Transcription, Genetic , Zygote/cytology
...