Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glia ; 58(10): 1197-207, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20544855

RESUMEN

Glycosphingolipids (GSLs) occur in all mammalian plasma membranes. They are most abundant in neuronal cells and have essential roles in brain development. Glucosylceramide (GlcCer) synthase, which is encoded by the Ugcg gene, is the key enzyme driving the synthesis of most neuronal GSLs. Experiments using conditional Nestin-Cre Ugcg knockout mice have shown that GSL synthesis in vivo is essential, especially for brain maturation. However, the roles of GSL synthesis in mature neurons remain elusive, since Nestin-Cre is expressed in neural precursors as well as in postmitotic neurons. To address this problem, we generated Purkinje cell-specific Ugcg knockout mice using mice that express Cre under the control of the L7 promoter. In these mice, Purkinje cells survived for at least 10-18 weeks after Ugcg deletion. We observed apparent axonal degeneration characterized by the accumulation of axonal transport cargos and aberrant membrane structures. Dendrites, however, were not affected. In addition, loss of GSLs disrupted myelin sheaths, which were characterized by detached paranodal loops. Notably, we observed doubly myelinated axons enveloped by an additional concentric myelin sheath around the original sheath. Our data show that axonal GlcCer-based GSLs are essential for axonal homeostasis and correct myelin sheath formation.


Asunto(s)
Axones/metabolismo , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/metabolismo , Vaina de Mielina/metabolismo , Células de Purkinje/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Transporte Axonal/fisiología , Axones/ultraestructura , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Cerebelo/metabolismo , Cerebelo/ultraestructura , Dendritas/metabolismo , Dendritas/ultraestructura , Glucosiltransferasas/genética , Glicoesfingolípidos/biosíntesis , Homeostasis/fisiología , Ratones , Ratones Noqueados , Vaina de Mielina/ultraestructura , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/ultraestructura , Células de Purkinje/ultraestructura
2.
Muscle Nerve ; 37(6): 721-30, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18506710

RESUMEN

Patients with peripheral neuropathy frequently suffer from positive sensory (pain and paresthesias) and motor (muscle cramping) symptoms even in the recovery phase of the disease. To investigate the pathophysiology of increased axonal excitability in peripheral nerve regeneration, we assessed the temporal and spatial expression of voltage-gated Na(+) channels as well as nodal persistent Na(+) currents in a mouse model of Wallerian degeneration. Crushed sciatic nerves of 8-week-old C57/BL6J male mice underwent complete Wallerian degeneration at 1 week. Two weeks after crush, there was a prominent increase in the number of Na(+) channel clusters per unit area, and binary or broad Na(+) channel clusters were frequently found. Excess Na(+) channel clusters were retained up to 20 weeks post-injury. Excitability testing using latent addition suggested that nodal persistent Na(+) currents markedly increased beginning at week 3, and remained through week 10. These results suggest that axonal regeneration is associated with persistently increased axonal excitability resulting from increases in the number and conductance of Na(+) channels.


Asunto(s)
Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Canales de Sodio/biosíntesis , Canales de Sodio/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Inmunohistoquímica , Canal de Potasio Kv.1.2/biosíntesis , Canal de Potasio Kv.1.2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Degeneración Nerviosa/fisiopatología , Fibras Nerviosas/fisiología , Fibras Nerviosas/ultraestructura , Nervios Periféricos/metabolismo , Canales de Potasio/biosíntesis , Canales de Potasio/genética , Canales de Potasio/fisiología , Nervio Ciático/patología , Canales de Sodio/genética , Degeneración Walleriana/fisiopatología
3.
Glia ; 55(10): 1044-52, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17549680

RESUMEN

Annexin II (AX II) is a member of the family of calcium-dependent actin- and phospholipid-binding proteins implicated in numerous intracellular functions such as signal transduction, membrane trafficking, and mRNA transport, as well as in the regulation of membrane/cytoskeleton contacts and extracellular functions. AX II is expressed in the central nervous system (CNS) and is upregulated in some pathological conditions. However, expression and localization of this protein in the peripheral nervous system (PNS) is still uncertain. In the present study, we examined the expression and distribution of AX II in the PNS. By western blot analysis, we found that a higher level of AX II was present in sciatic nerve homogenates than in brain homogenates. RT-PCR of total RNA from rat sciatic nerves revealed that AX II was synthesized within the nerves. Immunohistological analysis showed the characteristic distribution of AX II in Schmidt-Lanterman incisures (SLI) as well as in the paranodal regions. Localization of AX II in the PNS was examined in two mutant mouse models, shiverer and cerebroside sulfotransferase knockout mice, both of which show increased numbers of SLI. The paranodal axo-glial junction is also disrupted in the latter. Interestingly, the staining intensities of AX II in these regions were increased markedly in both mutants, suggesting that not only the numbers but also AX II content in each incisure and paranodal loop were affected. From its characteristic distribution and molecular features, AX II may be important for myelin function in the PNS.


Asunto(s)
Anexina A2/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Sistema Nervioso Periférico/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Anexina A2/genética , Encéfalo/metabolismo , Encéfalo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Ratones Mutantes Neurológicos , Vaina de Mielina/ultraestructura , Fibras Nerviosas Mielínicas/ultraestructura , Sistema Nervioso Periférico/ultraestructura , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Nódulos de Ranvier/ultraestructura , Ratas , Ratas Wistar , Células de Schwann/metabolismo , Células de Schwann/ultraestructura , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Sulfotransferasas/genética
4.
J Neurosci Res ; 85(9): 1921-32, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17510974

RESUMEN

In myelinated fibers, various interactions among axons, oligodendrocytes, and astrocytes are present, particularly around the node of Ranvier. In the present study, we examined the protein composition of cerebroside sulfotransferase knockout (CST KO) mouse spinal cord by two-dimensional gel electrophoresis to examine the molecular changes resulting from the disruption of paranodal junctions in addition to the sulfatide-deficient condition. Interestingly, heat shock protein 27 (Hsp27) and 1-cys peroxiredoxin (1-Cys Prx) were both elevated in CST KO mice. Hsp27 was increased specifically in reactive astrocytes in the white matter, and the elevation was well correlated to the progression of neurologic symptoms. In contrast, 1-Cys Prx was elevated both in white and gray matter astrocytes in CST KO mice. These results suggest that astrocytes do not always respond stereotypically, as they display differences in their activation in these two regions. To determine whether these changes are specific to the sulfatide-deficient condition, spinal cords from CST KO mice and the hypomyelinating mutant shiverer mice were compared. The same distribution patterns of Hsp27 and 1-Cys Prx were found in reactive astrocytes in both CST KO and shiverer mice, suggesting that paranodal disruption with progressive nodal changes may underlie the similar reaction of white matter astrocytes. In contrast, CST KO and shiverer mice showed distinctly different localization patterns of connexin 43 and connexin 47, suggesting that intercellular communication between astrocytes and oligodendrocytes was different in these mutants. These results suggest that astrocytes may respond differentially to individual white matter abnormalities and may modulate specific axonal functions.


Asunto(s)
Astrocitos/metabolismo , Proteínas de Choque Térmico/biosíntesis , Peroxidasas/biosíntesis , Médula Espinal/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Sulfotransferasas/genética , Envejecimiento/metabolismo , Animales , Antimetabolitos , Western Blotting , Bromodesoxiuridina , Conexina 43/metabolismo , Conexinas/metabolismo , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Espectrometría de Masas , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Oligodendroglía/metabolismo , Peroxirredoxinas , Médula Espinal/citología , Regulación hacia Arriba/efectos de los fármacos
5.
Glia ; 55(6): 584-94, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17299768

RESUMEN

Galactocerebroside and sulfatide are two major glycolipids in myelin; however, their independent functions are not fully understood. The absence of these glycolipids causes disruption of paranodal junctions, which separate voltage-gated Na(+) and Shaker-type K(+) channels in the node and juxtaparanode, respectively. In contrast to glial cells in the central nervous system (CNS), myelinating Schwann cells in the peripheral nervous system (PNS) possess characteristic structures, including microvilli and Schmidt-Lanterman incisures, in addition to paranodal loops. All of these regions are involved in axo-glial interactions. In the present study, we examined cerebroside sulfotransferase-deficient mice to determine whether sulfatide is essential for axo-glial interactions in these PNS regions. Interestingly, marked axonal protrusions were observed in some of the nodal segments, which often contained abnormally enlarged vesicles, like degenerated mitochondria. Moreover, many transversely cut ends of microvilli surrounded the mutant nodes, suggesting that alignments of the microvilli were disordered. The mutant PNS showed mild elongation of nodal Na(+) channel clusters. Even though Caspr and NF155 were completely absent in half of the paranodes, short clusters of these molecules remained in the rest of the paranodal regions. Ultrastructural analysis indicated the presence of transverse bands in some paranodal regions and detachment of the outermost several loops. Furthermore, the numbers of incisures were remarkably increased in the mutant internode. Therefore, these results indicate that sulfatide may play an important role in the PNS, especially in the regions where myelin-axon interactions occur.


Asunto(s)
Nervios Periféricos/anomalías , Nervios Periféricos/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Nódulos de Ranvier/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Sulfotransferasas/deficiencia , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Axones/patología , Comunicación Celular/fisiología , Membrana Celular/metabolismo , Membrana Celular/patología , Proteínas del Citoesqueleto/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microvellosidades/metabolismo , Microvellosidades/patología , Conducción Nerviosa/fisiología , Nervios Periféricos/fisiopatología , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Canales de Potasio con Entrada de Voltaje/metabolismo , Nódulos de Ranvier/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Canales de Sodio/metabolismo , Sulfotransferasas/genética
6.
Glia ; 46(3): 274-83, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15048850

RESUMEN

In myelinated axons, voltage-gated sodium channels specifically cluster at the nodes of Ranvier, while voltage-gated potassium channels are located at the juxtaparanodes. These characteristic localizations are influenced by myelination. During development, Nav1.2 first appears in the predicted nodes during myelination, and Nav1.6 replaces it in the mature nodes. Such replacements may be important physiologically. We examined the influence of the paranodal junction on switching of sodium channel subunits using the sulfatide-deficient mouse. This mutant displayed disruption of paranodal axoglial junctions and altered nodal lengths and channel distributions. The initial switching of Nav1.2 to Nav1.6 occurred in the mutant optic nerves; however, the number of Nav1.2-positive clusters was significantly higher than in wild-type mice. Although no signs of demyelination were observed at least up to 36 weeks of age, sodium channel clusters decreased markedly with age. Interestingly, Nav1.2 stayed in some of the nodal regions, especially where the nodal lengths were elongated, while Nav1.6 tended to remain in the normal-length nodes. The results in the mutant optic nerves suggested that paranodal junction formation may be necessary for complete replacement of nodal Nav1.2 to Nav1.6 during development as well as maintenance of Nav1.6 clusters at the nodes. Such subtype abnormality was not observed in the sciatic nerve, where paranodal disruption was observed. Thus, the paranodal junction significantly influences the retention of Nav1.6 in the node, which is followed by disorganization of nodal structures. However, its importance may differ between the central and peripheral nervous system.


Asunto(s)
Axones/metabolismo , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Nervio Óptico/citología , Nervio Óptico/metabolismo , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Nódulos de Ranvier/genética , Canales de Sodio/genética , Sulfoglicoesfingolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA