Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Nat Commun ; 7: 13384, 2016 11 18.
Article En | MEDLINE | ID: mdl-27857062

Parathyroid hormone (PTH) is essential for calcium homeostasis and its action is mediated by the PTH type 1 receptor (PTHR1), a class B G-protein-coupled receptor. Hypoparathyroidism and osteoporosis can be treated with PTH injections; however, no orally effective PTH analogue is available. Here we show that PCO371 is a novel, orally active small molecule that acts as a full agonist of PTHR1. PCO371 does not affect the PTH type 2 receptor (PTHR2), and analysis using PTHR1-PTHR2 chimeric receptors indicated that Proline 415 of PTHR1 is critical for PCO371-mediated PTHR1 activation. Oral administration of PCO371 to osteopenic rats provokes a significant increase in bone turnover with limited increase in bone mass. In hypocalcemic rats, PCO371 restores serum calcium levels without increasing urinary calcium, and with stronger and longer-lasting effects than PTH injections. These results strongly suggest that PCO371 can provide a new treatment option for PTH-related disorders, including hypoparathyroidism.


Hypoparathyroidism/drug therapy , Imidazolidines/chemical synthesis , Receptor, Parathyroid Hormone, Type 1/agonists , Spiro Compounds/chemical synthesis , Animals , Dogs , Female , Gene Expression Regulation/drug effects , Humans , Imidazolidines/pharmacology , Male , Molecular Structure , Mutation , Parathyroid Glands/drug effects , Parathyroid Glands/surgery , Rats , Spiro Compounds/pharmacology
2.
Endocrinology ; 154(3): 1008-20, 2013 Mar.
Article En | MEDLINE | ID: mdl-23389957

The physiological and beneficial actions of vitamin D in bone health have been experimentally and clinically proven in mammals. The active form of vitamin D [1α,25(OH)(2)D(3)] binds and activates its specific nuclear receptor, the vitamin D receptor (VDR). Activated VDR prevents the release of calcium from its storage in bone to serum by stimulating intestinal calcium absorption and renal reabsorption. However, the direct action of VDR in bone tissue is poorly understood because serum Ca(2+) homeostasis is maintained through tightly regulated ion transport by the kidney, intestine, and bone. In addition, conventional genetic approaches using VDR knockout (VDR-KO, VDR(-/-)) mice could not identify VDR action in bone because of the animals' systemic defects in calcium metabolism. In this study, we report that systemic VDR heterozygous KO (VDR(+/L-)) mice generated with the Cre/loxP system as well as conventional VDR heterozygotes (VDR(+/-)) showed increased bone mass in radiological assessments. Because mineral metabolism parameters were unaltered in both types of mice, these bone phenotypes imply that skeletal VDR plays a role in bone mass regulation. To confirm this assumption, osteoblast-specific VDR-KO (VDR(ΔOb/ΔOb)) mice were generated with 2.3 kb α1(I)-collagen promoter-Cre transgenic mice. They showed a bone mass increase without any dysregulation of mineral metabolism. Although bone formation parameters were not affected in bone histomorphometry, bone resorption was obviously reduced in VDR(ΔOb/ΔOb) mice because of decreased expression of receptor activator of nuclear factor kappa-B ligand (an essential molecule in osteoclastogenesis) in VDR(ΔOb/ΔOb) osteoblasts. These findings establish that VDR in osteoblasts is a negative regulator of bone mass control.


Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Osteoblasts/metabolism , Receptors, Calcitriol/metabolism , Animals , Bone Density , Bone Resorption/genetics , Bone Resorption/metabolism , Bone Resorption/pathology , Calcium/metabolism , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Osteoclasts/metabolism , Receptors, Calcitriol/deficiency , Receptors, Calcitriol/genetics , Rickets/genetics , Rickets/metabolism , Rickets/pathology
3.
Proc Natl Acad Sci U S A ; 108(12): 4938-43, 2011 Mar 22.
Article En | MEDLINE | ID: mdl-21383160

Prostate cancer development is associated with hyperactive androgen signaling. However, the molecular link between androgen receptor (AR) function and humoral factors remains elusive. A prostate cancer mouse model was generated by selectively mutating the AR threonine 877 into alanine in prostatic epithelial cells through Cre-ERT2-mediated targeted somatic mutagenesis. Such AR point mutant mice (ARpe-T877A/Y) developed hypertrophic prostates with responses to both an androgen antagonist and estrogen, although no prostatic tumor was seen. In prostate cancer model transgenic mice, the onset of prostatic tumorigenesis as well as tumor growth was significantly potentiated by introduction of the AR T877A mutation into the prostate. Genetic screening of mice identified Wnt-5a as an activator. Enhanced Wnt-5a expression was detected in the malignant prostate tumors of patients, whereas in benign prostatic hyperplasia such aberrant up-regulation was not obvious. These findings suggest that a noncanonical Wnt signal stimulates development of prostatic tumors with AR hyperfunction.


Androgens/metabolism , Neoplasms, Experimental/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Wnt Proteins/metabolism , Amino Acid Substitution , Androgens/genetics , Animals , Humans , Male , Mice , Mice, Transgenic , Neoplasms, Experimental/genetics , Point Mutation , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Wnt Proteins/genetics
...