Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 19233, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584137

RESUMEN

The membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.


Asunto(s)
Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Animales , Células COS , Sistema Libre de Células , Chlorocebus aethiops , Humanos , Insectos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Procesamiento Proteico-Postraduccional
2.
PLoS One ; 14(11): e0225510, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31751425

RESUMEN

To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The difference in the banding pattern in Phos-tag SDS-PAGE between the WT and G2A-mutant FMNL2 indicated the presence of N-myristoylation-dependent phosphorylation sites in FMNL2. Phos-tag SDS-PAGE of FMNL2 mutants in which the putative phosphorylation sites listed in PhosphoSitePlus (an online database of phosphorylation sites) were changed to Ala revealed that Ser-171 and Ser-1072 are N-myristoylation-dependent phosphorylation sites in FMNL2. Similar experiments with FMNL3 demonstrated that N-myristoylation-dependent phosphorylation occurs at a single Ser residue at position 174, which is a Ser residue conserved between FMNL2 and FMNL3, corresponding to Ser-171 in FMNL2. The facts that phosphorylation of Ser-1072 in FMNL2 has been shown to play a critical role in integrin ß1 internalization mediated by FMNL2 and that Ser-171 in FMNL2 and Ser-174 in FMNL3 are novel putative phosphorylation sites conserved between FMNL2 and FMNL3 indicate that the strategy used in this study is a useful tool for identifying and characterizing physiologically important phosphorylation reactions occurring on N-myristoylated proteins.


Asunto(s)
Forminas/metabolismo , Piridinas/química , Serina/química , Animales , Células COS , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Forminas/química , Forminas/genética , Células HEK293 , Humanos , Mutación , Fosforilación
3.
PLoS One ; 13(11): e0206355, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427857

RESUMEN

Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...