Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(3): 1543-1549, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35280563

RESUMEN

Bisphenol-A (BPA), an organic compound with two phenol functional groups, is a widely used industrial plasticizer with known estrogenic properties. It is used in the manufacture of epoxy resins and polycarbonate plastics. This study was designed to evaluate and assess the possible toxicity arising from the oral administration of BPA to pregnant mice. Pregnant SWR/J mice (15 mice/group) were administrated oral doses of BPA (125, 250 and 500 mg/kg/day) over the course of five-day intervals during gestation (D1-5, D6-10 and D11-15), while control groups received only corn oil. The results indicated that BPA was associated with a reduction in the body weight of the pregnant mice from around 2-3 days after administration until the end of gestation. The greatest effects were evident when the BPA was given during the later stages of pregnancy, and with higher doses. They also showed marked reduction in food intake and, to a lesser extent, in water intake. Furthermore, doses of BPA induced a reduction in implantation sites, lower foetal body weight and increased mortality rates. Abortion and foetal resorption rates were not affected by BPA administration, however. The above findings were concluded by discussing the possible mechanisms involved in producing these effects.

2.
Saudi J Biol Sci ; 28(1): 204-209, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424298

RESUMEN

The sequence of the DNA contains coding and non-coding regions. The role of the non-coding regions is not known and is hypothesized to maintain the structure of the DNA. This study aimed to investigate the structure of the non-coding sequences in honey bees utilizing bioinformatics. The non-coding sequences of the mtDNA of three honey bee species Apis dorosata, Apis florea, Apis cerana, and ten subspecies of Apis mellifera were investigated. Different techniques were utilized to explore the non-coding regions of these bees including sequence analysis, phylogenetic relationships, enzymatic digestion, and statistical tests. Variations in size and sequences of nucleotides were detected in the studied species and subspecies, but with the same nucleotide abundance (i.e. nucleotides A were more than T and nucleotides G were less than C). The phylogenetic tree based on the non-coding regions was partially similar to the known phylogenetic relationships between these bees. The enzymatic digestion using four restriction enzymes confirmed the results of the phylogenetic relationships. The statistical analysis based on numerical codes for nucleotides showed the absence of significant variations between the studied bees in their sequences in a similar way to results of neutrality tests. This study suggests that the non-coding regions have the same functional role in all the studied bees regardless of the number of nucleotides, and not just to maintain the structure of the DNA. This is approximately the first study to shade lights on the non-coding regions of the mtDNA of honey bees.

3.
Saudi J Biol Sci ; 27(12): 3327-3333, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304138

RESUMEN

Malaria caused by genus Plasmodium, is a parasite which is the main health issue for humans and about half of the population were suffered. An every year, approximately 1.2-2.7 million people died due to malaria globally. Therefore to prevent the spreading of malaria from the glob novel active drugs with specific activities are necessary. The present study aimed to identify novel drug molecule together with the bioinformatic tools for the development of active malarial drugs. As the search for latest anti malarial compound was developed, this work determined six active blends from various drug databases which possess drug-like characteristics and presents a significant anti malarial actions in in-silico level. Compound ID 300238, 889, 76569, 87324, 45678, and Z185397112are a few of the ligands were got from the Toss lab, Maybridge, Cambridge, Life chem, Bitter, and Examine drug databases and docked against hexokinase 1 protein (PDB: 1CZA) with high throughput practical screening (HTVS) using Glide v6.6. Amid the 6 compounds, compound no: 300238 from Toss lab has the greatest docking score of -9.889 kcal/mol targeting 1CZA protein. The active sites of Hexokinase I of protein were determine by using superimposition of the destination and template structure showed similar structural folds and active sites which were decidedly conserved. The quality of hexokinase I protein was considered to be sterically stable where the protein was prepared by utilizing the software protein preparation execute in the Schrodinger suite. Prepared proteins were evaluated using SAVES and the studies of molecular dynamics of the hexokinase, and the GROMACS were performed for protein-ligand complex. The low HOMO-LUMO energy gaps of the compound verified the greater stability of the molecule. Here, the tested drug candidates have good absorption, distribution, metabolism, and excretion (ADME) properties which were established by using QikProp, version 3.4 of Schrodinger.

4.
Saudi J Biol Sci ; 27(5): 1384-1389, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32346350

RESUMEN

Camels are an integral and essential component of the Saudi Arabian heritage. The genetic diversity and population genetic structure of dromedary camels are poorly documented in Saudi Arabia so this study was carried out to investigate the genetic diversity of both local and exotic camel breeds. The genetic diversity was evaluated within and among camel populations using 21 microsatellite loci. Hair and blood samples were collected from 296 unrelated animals representing 4 different local breeds, namely Majaheem (MG), Maghateer (MJ), Sofr (SO), and Shaul (SH), and two exotic breeds namely Sawahli (SL) and Somali (SU). Nineteen out of 21 microsatellite loci generated multi-locus fingerprints for the studied camel individuals, with an average of 13.3 alleles per locus. Based on the genetic analyses, the camels were divided into two groups: one contained the Saudi indigenous populations (MG, MJ, SH and SO) and the other contained the non-Saudi ones (SU and SL). There was very little gene flow occurring between the two groups. The African origin of SU and SL breeds may explain their close genetic relationship. It is anticipated that the genetic diversity assessment is important to preserve local camel genetic resources and develop future breeding programs to improve camel productivity.

5.
Ultrason Sonochem ; 63: 104902, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31951998

RESUMEN

Herein, the synthesis of copper ferrite nanoparticles (CuFe2O4 NPs)/chitosan have been prepared by sonochemical route under ultrasonic irradiation bath at 40 kHz and 50 W. A high sensitive and stable modified electrochemical sensor was developed using a composition of copper ferrite nanoparticles coordinated with biopolymer through a facile ultrasound approach. Besides, power and frequency parameters are highly important for sonochemical synthesis and specifically structure, and size of the nanomaterials development during the ultrasonic irradiation time. In this work, ultrasonic bath was used to synthesis of CuFe2O4 nanomaterial at 40 kHz with 1 h. CuFe2O4/chitosan was characterized by FESEM, EDX, XRD and electrochemical methods. Furthermore, 8-hydroxyguanine is one of biomarker by oxidative stress. The concentrations of 8-hydroxyguanine within a cell are a measurement of oxidative stress in human body. Consequently, the measurement of 8-hydroxyguanine in blood serum samples with high specificity is of greatest importance. The CuFe2O4/chitosan modified electrode is displayed a low detection limit of 8.6 nM and long linear range (0.025-697.175 µM).


Asunto(s)
Quitosano/química , Cobre/química , Técnicas Electroquímicas/instrumentación , Compuestos Férricos/química , Nanopartículas/química , Humanos , Límite de Detección , Estrés Oxidativo
6.
Ultrason Sonochem ; 62: 104872, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31806555

RESUMEN

In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 µA·µM-1·cm-2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...