Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Prod Bioprospect ; 14(1): 7, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200389

RESUMEN

Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.

2.
Ecotoxicol Environ Saf ; 252: 114587, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758508

RESUMEN

A large amount of lignocellulosic waste is generated every day in the world, and their accumulation in the agroecosystems, integration in soil compositions, or incineration for energy production has severe environmental pollution effects. Using enzymes as biocatalysts for the biodegradation of lignocellulosic materials, especially in harsh processing conditions, is a practical step towards green energy and environmental biosafety. Hence, the current study focuses on enzyme computationally screened from camel rumen metagenomics data as specialized microbiota that have the capacity to degrade lignocellulosic-rich and recalcitrant materials. The novel hyperthermostable xylanase named PersiXyn10 with the performance at extreme conditions was proper activity within a broad temperature (30-100 â„ƒ) and pH range (4.0-11.0) but showed the maximum xylanolytic activity in severe alkaline and temperature conditions, pH 8.0 and temperature 90 â„ƒ. Also, the enzyme had highly resistant to metals, surfactants, and organic solvents in optimal conditions. The introduced xylanase had unique properties in terms of thermal stability by maintaining over 82% of its activity after 15 days of incubation at 90 â„ƒ. Considering the crucial role of hyperthermostable xylanases in the paper industry, the PersiXyn10 was subjected to biodegradation of paper pulp. The proper performance of hyperthermostable PersiXyn10 on the paper pulp was confirmed by structural analysis (SEM and FTIR) and produced 31.64 g/L of reducing sugar after 144 h hydrolysis. These results proved the applicability of the hyperthermostable xylanase in biobleaching and saccharification of lignocellulosic biomass for declining the environmental hazards.


Asunto(s)
Endo-1,4-beta Xilanasas , Microbiota , Animales , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Lignina/metabolismo , Temperatura , Hidrólisis
3.
Sci Total Environ ; 866: 161066, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36565882

RESUMEN

Discharging the tannery wastewater into the environment is a serious challenge worldwide due to the release of severe recalcitrant pollutants such as oil compounds and organic materials. The biological treatment through enzymatic hydrolysis is a cheap and eco-friendly method for eliminating fatty substances from wastewater. In this context, lipases can be utilized for bio-treatment of wastewater in multifaceted industrial applications. To overcome the limitations in removing pollutants in the effluent, we aimed to identify a novel robust stable lipase (PersiLipase1) from metagenomic data of tannery wastewater for effective bio-degradation of the oily wastewater pollution. The lipase displayed remarkable thermostability and maintained over 81 % of its activity at 60 °C.After prolonged incubation for 35 days at 60°C, the PersiLipase1 still maintained 53.9 % of its activity. The enzyme also retained over 67 % of its activity in a wide range of pH (4.0 to 9.0). In addition, PersiLipase1 demonstrated considerable tolerance toward metal ions and organic solvents (e.g., retaining >70% activity after the addition of 100 mM of chemicals). Hydrolysis of olive oil and sheep fat by this enzyme showed 100 % efficiency. Furthermore, the PersiLipase1 proved to be efficient for biotreatment of oil and grease from tannery wastewater with the hydrolysis efficiency of 90.76 % ± 0.88. These results demonstrated that the metagenome-derived PersiLipase1 from tannery wastewater has a promising potential for the biodegradation and management of oily wastewater pollution.


Asunto(s)
Lipasa , Aguas Residuales , Animales , Ovinos , Lipasa/química , Hidrólisis , Detergentes , Solventes/química , Concentración de Iones de Hidrógeno , Temperatura
4.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499756

RESUMEN

The hydrangea (Hydrangea macrophylla (Thunb). Ser.), an ornamental plant, has good marketing potential and is known for its capacity to change the colour of its inflorescence depending on the pH of the cultivation media. The molecular mechanisms causing these changes are still uncertain. In the present study, transcriptome and targeted metabolic profiling were used to identify molecular changes in the RNAome of hydrangea plants cultured at two different pH levels. De novo assembly yielded 186,477 unigenes. Transcriptomic datasets provided a comprehensive and systemic overview of the dynamic networks of the gene expression underlying flower colour formation in hydrangeas. Weighted analyses of gene co-expression network identified candidate genes and hub genes from the modules linked closely to the hyper accumulation of Al3+ during different stages of flower development. F3'5'H, ANS, FLS, CHS, UA3GT, CHI, DFR, and F3H were enhanced significantly in the modules. In addition, MYB, bHLH, PAL6, PAL9, and WD40 were identified as hub genes. Thus, a hypothesis elucidating the colour change in the flowers of Al3+-treated plants was established. This study identified many potential key regulators of flower pigmentation, providing novel insights into the molecular networks in hydrangea flowers.


Asunto(s)
Hydrangea , Hydrangea/genética , Hydrangea/química , Perfilación de la Expresión Génica , Flores/metabolismo , Transcriptoma , Pigmentación/genética , Concentración de Iones de Hidrógeno , Regulación de la Expresión Génica de las Plantas , Antocianinas/metabolismo
5.
Biochem Biophys Res Commun ; 617(Pt 1): 8-15, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35660877

RESUMEN

Mouse embryonic stem cells (mESCs) can be maintained in a pluripotent state under R2i culture conditions that inhibit the TGF-ß and ERK signaling pathways. BMP4 is another member of the TGF-ß family that plays a crucial role in maintaining the pluripotency state of mESCs. It has been reported that inhibition of BMP4 caused the death of R2i-grown cells. In this study, we used the loss-of-function approach to investigate the role of BMP4 signaling in mESC self-renewal. Inhibition of this pathway with Noggin and dorsomorphin, two bone morphogenetic protein (BMP) antagonists, elicited a quick death of the R2i-grown cells. We showed that the canonical pathway of BMP4 (BMP/SMAD) was dispensable for self-renewal and maintaining pluripotency of these cells. Transcriptome analysis of the BMPi-treated cells revealed that the p53 signaling and two adhesion (AD) and apoptotic mitochondrial change (MT) pathways could be involved in the cell death of the BMPi-treated cells. According to our results, inhibition of BMP4 signaling caused a decrease in cell adhesion and ECM detachment, which triggered anoikis in the R2i-grown cells. Altogether, these findings demonstrate that endogenous BMP signaling is required for the survival of mESCs under the R2i condition.


Asunto(s)
Células Madre Embrionarias de Ratones , Transducción de Señal , Animales , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Sistema de Señalización de MAP Quinasas , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Funct Plant Biol ; 49(8): 742-758, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35569923

RESUMEN

Seed dormancy ensures plant survival but many mechanisms remain unclear. A high-throughput RNA-seq analysis investigated the mechanisms involved in the establishment of dormancy in dimorphic seeds of Xanthium strumarium (L.) developing in one single burr. Results showed that DOG1 , the main dormancy gene in Arabidopsis thaliana L., was over-represented in the dormant seed leading to the formation of two seeds with different cell wall properties. Less expression of DME /EMB1649 , UBP26 , EMF2, MOM, SNL2, and AGO4 in the non-dormant seed was observed, which function in the chromatin remodelling of dormancy-associated genes through DNA methylation. However, higher levels of ATXR7 /SDG25, ELF6 , and JMJ16/PKDM7D in the non-dormant seed that act at the level of histone demethylation and activate germination were found. Dramatically lower expression in the splicing factors SUA, PWI , and FY in non-dormant seed may indicate that variation in RNA splicing for ABA sensitivity and transcriptional elongation control of DOG1 is of importance for inducing seed dormancy. Seed size and germination may be influenced by respiratory factors, and alterations in ABA content and auxin distribution and responses. TOR (a serine/threonine-protein kinase) is likely at the centre of a regulatory hub controlling seed metabolism, maturation, and germination. Over-representation of the respiration-associated genes (ACO3 , PEPC3 , and D2HGDH ) was detected in non-dormant seed, suggesting differential energy supplies in the two seeds. Degradation of ABA biosynthesis and/or proper auxin signalling in the large seed may control germinability, and suppression of endoreduplication in the small seed may be a mechanism for cell differentiation and cell size determination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Xanthium , ATPasas Asociadas con Actividades Celulares Diversas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Ácidos Indolacéticos/metabolismo , Semillas/genética , Factores de Transcripción/genética , Xanthium/metabolismo
7.
Int J Biol Macromol ; 211: 328-341, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35551951

RESUMEN

Laccases have been broadly applied as a multitasking biocatalyst in various industries, but their applications tend to be limited by easy deactivation, lack of adequate stability, and susceptibility under complex conditions. Identifying stable laccase as a green-biocatalyst is crucial for developing cost-effective biorefining processes. In this direction, we attempted in-silico screening a stable metagenome-derived laccase (PersiLac1) from tannery wastewater in a complex environment. The laccase exhibited high thermostability, retaining 53.19% activity after 180 min at 70 °C, and it was stable in a wide range of pH (4.0-9.0). After 33 days of storage at 50°C, pH 6.0, the enzyme retained 71.65% of its activity. Various metal ions, inhibitors, and organic solvents showed that PersiLac1 has a stable structure. The stable PersiLac1 could successfully remove lignin and phenolic from quinoa husk and rice straw. In the separate hydrolysis and fermentation process (SHF) after 72 h, hydrolysis was obtained 100% and 73.4% for quinoa husk and rice straw, and fermentation by the S. cerevisiae was be produced 41.46 g/L and 27.75g/L ethanol, respectively. Results signified that the novel lignin-degrading enzyme was confirmed to have great potential for industrial application as a green-biocatalyst based on enzymatically triggered to delignification and detoxify lignocellulosic biomass.


Asunto(s)
Lignina , Microbiota , Biomasa , Lacasa/química , Lacasa/genética , Lignina/química , Saccharomyces cerevisiae
8.
Sci Total Environ ; 815: 152796, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986419

RESUMEN

Elimination of protein-rich waste materials is one of the vital environmental protection requirements. Using of non-naturally occurring chemicals for their remediation properties can potentially induce new pollutants. Therefore, enzymes encoded in the genomes of microorganisms evolved in the same environment can be considered suitable alternatives to chemicals. Identification of efficient proteases that can hydrolyze recalcitrant, protein-rich wastes produced by various industrial processes has been widely welcomed as an eco-friendly waste management strategy. In this direction, we attempted to screen a thermo-halo-alkali-stable metagenome-derived protease (PersiProtease1) from tannery wastewater. The PersiProtease1 exhibited high pH stability over a wide range and at 1 h in pH 11.0 maintained 87.59% activity. The enzyme possessed high thermal stability while retaining 76.64% activity after 1 h at 90 °C. Moreover, 65.34% of the initial activity of the enzyme remained in the presence of 6 M NaCl, showing tolerance against high salinity. The presence of various metal ions, inhibitors, and organic solvents did not remarkably inhibit the activity of the discovered protease. The PersiProtease1 was extracted from the tannery wastewater microbiota and efficiently applied for biodegradation of real sample tannery wastewater protein, chicken feathers, whey protein, dehairing sheepskins, and waste X-ray films. PersiProtease1 proved its enormous potential in simultaneous biodegradation of solid and liquid protein-rich industrial wastes based on the results.


Asunto(s)
Microbiota , Aguas Residuales , Animales , Hidrólisis , Residuos Industriales/análisis , Péptido Hidrolasas
9.
Theor Appl Genet ; 135(1): 81-106, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34623472

RESUMEN

KEY MESSAGE: Applying an integrated meta-analysis approach led to identification of meta-QTLs/ candidate genes associated with rice root system architecture, which can be used in MQTL-assisted breeding/ genetic engineering of root traits. Root system architecture (RSA) is an important factor for facilitating water and nutrient uptake from deep soils and adaptation to drought stress conditions. In the present research, an integrated meta-analysis approach was employed to find candidate genes and genomic regions involved in rice RSA traits. A whole-genome meta-analysis was performed for 425 initial QTLs reported in 34 independent experiments controlling RSA traits under control and drought stress conditions in the previous twenty years. Sixty-four consensus meta-QTLs (MQTLs) were detected, unevenly distributed on twelve rice chromosomes. The confidence interval (CI) of the identified MQTLs was obtained as 0.11-14.23 cM with an average of 3.79 cM, which was 3.88 times narrower than the mean CI of the original QTLs. Interestingly, 52 MQTLs were co-located with SNP peak positions reported in rice genome-wide association studies (GWAS) for root morphological traits. The genes located in these RSA-related MQTLs were detected and explored to find the drought-responsive genes in the rice root based on the RNA-seq and microarray data. Multiple RSA and drought tolerance-associated genes were found in the MQTLs including the genes involved in auxin biosynthesis or signaling (e.g. YUCCA, WOX, AUX/IAA, ARF), root angle (DRO1-related genes), lateral root development (e.g. DSR, WRKY), root diameter (e.g. OsNAC5), plant cell wall (e.g. EXPA), and lignification (e.g. C4H, PAL, PRX and CAD). The genes located within both the SNP peak positions and the QTL-overview peaks for RSA are suggested as novel candidate genes for further functional analysis. The promising candidate genes and MQTLs can be used as basis for genetic engineering and MQTL-assisted breeding of root phenotypes to improve yield potential, stability and performance in a water-stressed environment.


Asunto(s)
Genoma de Planta , Oryza/genética , Raíces de Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Estudios de Asociación Genética , Marcadores Genéticos , Escala de Lod , Oryza/anatomía & histología , Fitomejoramiento , Raíces de Plantas/anatomía & histología , Sitios de Carácter Cuantitativo
10.
J Food Biochem ; 46(1): e14030, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34914113

RESUMEN

Quinoa (Chenopodium quinoa Willd) is a potential source of protein with ideal amino acid profiles which its bioactive compounds can be improved during germination and gastrointestinal digestion. The present investigation studies the impact of germination for 24 hr and simulated gastrointestinal digestion on α-glucosidase inhibitory activity of the quinoa protein and bioactive peptides against the novel homologue of human α-glucosidase, PersiAlpha-GL1. The sprouted quinoa after gastroduodenal digestion was the most effective α-glucosidase inhibitor showing 81.10% α-glucosidase inhibition at concentration 4 mg/ml with the half inhibition rate (IC50 ) of 0.07 mg/ml. Based on the kinetic analysis, both the germinated and non-germinated samples before and after digestion were competitive-type inhibitors of α-glucosidase. Results of this study showed the improved α-glucosidase inhibitory activity of the quinoa bioactive peptides after germination and gastrointestinal digestion and highlighted the potential of metagenome-derived PersiAlpha-GL1 as a novel homologue of the human α-glucosidase for developing the future anti-diabetic drugs. PRACTICAL APPLICATIONS: This study aimed to evaluate the effect of germination and gastrointestinal digestion of the quinoa protein and bioactive peptides on α-glucosidase inhibitory activity against the novel PersiAlpha-GL1. Metagenomic data were used to identify the novel α-glucosidase structurally and functionally homologue of human intestinal. The results showed the highest inhibition on PersiAlpha-GL1 by a germinated quinoa after gastroduodenal digestion and confirmed the potential of PersiAlpha-GL1 to enhance the effectiveness of the anti-diabetic drugs for industrial application.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Chenopodium quinoa/metabolismo , Digestión , Humanos , Cinética , Hidrolisados de Proteína , alfa-Glucosidasas/metabolismo
11.
Sci Rep ; 11(1): 21386, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725388

RESUMEN

Xylanase improves poultry nutrition by degrading xylan in the cell walls of feed grains and release the entrapped nutrients. However, the application of xylanase as a feed supplement is restricted to its low stability in the environment and gastrointestinal (GI) tract of poultry. To overcome these obstacles, Zeozyme NPs as a smart pH-responsive nanosystem was designed based on xylanase immobilization on zeolitic nanoporous as the major cornerstone that was modified with L-lysine. The immobilized xylanase was followed by encapsulating with a cross-linked CMC-based polymer. Zeozyme NPs was structurally characterized using TEM, SEM, AFM, DLS, TGA and nitrogen adsorption/desorption isotherms at liquid nitrogen temperature. The stability of Zeozyme NPs was evaluated at different temperatures, pH, and in the presence of proteases. Additionally, the release pattern of xylanase was investigated at a digestion model mimicking the GI tract. Xylanase was released selectively at the duodenum and ileum (pH 6-7.1) and remarkably preserved at pH ≤ 6 including proventriculus, gizzard, and crop (pH 1.6-5). The results confirmed that the zeolite equipped with the CMC matrix could enhance the xylanase thermal and pH stability and preserve its activity in the presence of proteases. Moreover, Zeozyme NPs exhibited a smart pH-dependent release of xylanase in an in vitro simulated GI tract.


Asunto(s)
Alimentación Animal , Preparaciones de Acción Retardada/química , Endo-1,4-beta Xilanasas/administración & dosificación , Zeolitas/química , Alimentación Animal/análisis , Animales , Suplementos Dietéticos/análisis , Endo-1,4-beta Xilanasas/química , Enzimas Inmovilizadas/administración & dosificación , Enzimas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Nanopartículas/química , Nanopartículas/ultraestructura , Aves de Corral
12.
Front Microbiol ; 12: 713125, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526977

RESUMEN

α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30-50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.

13.
Chemosphere ; 285: 131412, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34329139

RESUMEN

Herein, an innovative, green, and practical biocatalyst was developed using conjugation of a novel bifunctional mannanase/xylanase biocatalyst (PersiManXyn1) to the modified cellulose nanocrystals (CNCs). Firstly, PersiManXyn1 was multi-stage in-silico screened from rumen macrobiota, and then cloned, expressed, and purified. Next, CNCs were synthesized from sugar beet pulp using enzymatic and acid hydrolysis processes, and then Fe3O4 NPs were anchored on their surface to produce magnetic CNCs (MCNCs). This hybrid was modified by dopamine providing DA/MCNCs nano-carrier. The bifunctional PersiManXyn1 demonstrated the superior hydrolysis activity on corn cob compared with the monofunctional xylanase enzyme (PersiXyn2). Moreover, the immobilization of PersiManXyn1 on the nano-carrier resulted in an improvement of the thermal stability, kinetic parameters (Kcat), and storage stability of the enzyme. Incorporation of the Fe3O4 NPs on the CNCs made magnetic nano-carrier with high magnetization value (25.8 emu/g) which exhibited rapid response toward the external magnetic fields. Hence, the immobilized biocatalyst could be easily separated from the products by a magnet, and reused up to 8 cycles with maintaining more than 50% of its original activity. The immobilized PersiManXyn1 generated 22.2%, 38.7%, and 35.1% more reducing sugars after 168 h hydrolysis of the sugar beet pulp, coffee waste, and rice straw, respectively, compared to the free enzyme. Based on the results, immobilization of the bifunctional PersiManXyn1 exhibited the superb performance of the enzyme to improve the conversion of the lignocellulosic wastes into high value products and develop the cost-competition biomass operations.


Asunto(s)
Enzimas Inmovilizadas , Lignina , Animales , Biomasa , Biotransformación , Hidrólisis , Lignina/metabolismo
14.
Bioresour Technol ; 337: 125468, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34320748

RESUMEN

A novel thermostable/halotolerant metagenome-derived laccase (PersiLac2) from tannery wastewater was purified to remove textile dyes in this study. The enzyme was highly active over a wide temperature and pH range and maintained 73.35% of its initial activity after 30 days, at 50 °C. The effect of various metal and organic-solvent tolerance on PersiLac2 showed, retaining greater than 53% activity at 800 mM of metal ions, 52.12% activity at 6 M NaCl, and greater than 44.09% activity at 20% organic solvents. PersiLac2 manifested effective removal of eight different textile dyes from azo, anthraquinone, and triphenylmethane families. It decolorized 500 mg/L of Alizarin yellow, Carmine, Congo red and Bromothymol blue with 99.74-55.85% efficiency after 15 min, at 50 °C, without mediator. This enzyme could practically remove dyes from a real textile effluent and it displayed significant detoxification in rice seed germination tests. In conclusion, PersiLac2 could be useful in future for decolorization/detoxification of wastewater.


Asunto(s)
Lacasa , Aguas Residuales , Colorantes , Humanos , Metagenoma , Industria Textil , Textiles
15.
Carbohydr Polym ; 256: 117511, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483032

RESUMEN

A combined enzymatic treatment/acid hydrolysis technique was utilized to synthesize cellulose nanocrystals (CNCs) from sugar beet pulp. CNCs were functionalized with magnetite nanoparticles and dopamine making a versatile nano-carrier (DA/Fe3O4NPs@CNCs) for covalent enzyme immobilization. Oxygene/amine functionalities, high magnetization value, and specific surface area of DA/Fe3O4NPs@CNCs made it a reusable and green candidate for conjugation to hydrolytic enzyme cocktails (three cellulases, two hemicellulases, and their combinations) to prepare an innovative and practical nano-biocatalyst for biomass conversion. The conjugated enzymes showed an enhanced optimum temperature (∼ 10 °C), improved thermal stability, and shifted optimum pH toward alkaline pHs. Covalent attachment could successfully suppress the enzyme leaching and provide easy recovery/reuse of the nano-biocatalyst up to 10 cycles, with > 50% of initial activity. Application of the nano-biocatalyst in hydrolysis of rice straw and sugar beet pulp showed an increase (20-76%) in the yield of fermentable sugars compared to the free enzyme cocktails.


Asunto(s)
Celulosa/química , Dopamina/química , Enzimas Inmovilizadas/química , Nanopartículas de Magnetita/química , Nanotecnología/métodos , Azúcares/química , Beta vulgaris/química , Biomasa , Estabilidad de Enzimas , Fermentación , Humanos , Concentración de Iones de Hidrógeno , Cinética , Nanopartículas de Magnetita/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Raíces de Plantas/química , Temperatura
16.
PeerJ ; 9: e10463, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510967

RESUMEN

BACKGROUND: The rumen microbiota contributes strongly to the degradation of ingested plant materials. There is limited knowledge about the diversity of taxa involved in the breakdown of lignocellulosic biomasses with varying chemical compositions in the rumen. METHOD: We aimed to assess how and to what extent the physicochemical properties of forages influence the colonization and digestion by rumen microbiota. This was achieved by placing nylon bags filled with candidate materials in the rumen of fistulated sheep for a period of up to 96 h, followed by measuring forage's chemical characteristics and community structure of biofilm-embedded microbiota. RESULTS: Rumen degradation for all forages appeared to have occurred mainly during the first 24 h of their incubation, which significantly slowed down after 48 h of rumen incubation, depending on their chemical properties. Random Forest analysis predicted the predominant role of Treponema and Butyrivibrio in shaping microbial diversity attached to the forages during the course of rumen incubation. Exploring community structure and composition of fiber-attached microbiota revealed significant differential colonization rates of forages depending on their contents for NDF and cellulose. The correlation analysis highlighted the significant contribution of Lachnospiraceae and Veillonellaceae to fiber degradation in the sheep rumen. CONCLUSION: Our findings suggested that forage cellulose components are critical in shaping the pattern of microbial colonization and thus their final digestibility in the rumen.

17.
Bioresour Technol ; 319: 124228, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254455

RESUMEN

Herein, we report bi-functional applications of a novel immobilized enzyme on the modified magnetic graphene oxide (GO) for effective removal of dyes from water. The amine functionalized GO nano-carrier was covalently attached to a model enzyme (PersiManXyn1). The enzyme assays showed that the specific activities of the free and immobilized enzyme were 856.05 and 1141.1 µmolmin-1mg-1, respectively. While the free enzyme showed only 5% of its maximum activity, the immobilized PersiManXyn1 preserved more than 35% of its activity, at 90 °C. After four weeks storage, the free enzyme has been deactivated, but the immobilized enzyme retained 54% of its initial activity. The immobilized PersiManXyn1 was proficiently applied for dye removal from water using two strategies. While only pristine nano-carrier and free enzyme showed no considerable catalytic ability, the immobilized PersiManXyn1 could catalytically reduce the concentrated dye solutions within 150 s with superior reusability (94% dye removal after 15th cycle). Proficient treatment of a real textile effluent by the immobilized PersiManXyn1 approved its practical applications in the water remediation.


Asunto(s)
Enzimas Inmovilizadas , Grafito , Colorantes , Estabilidad de Enzimas , Fenómenos Magnéticos , Agua
18.
J Dermatol Sci ; 101(1): 49-57, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183906

RESUMEN

BACKGROUND: The exact pathogenic mechanism causes hair miniaturization during androgenic alopecia (AGA) has not been delineated. Recent evidence has shown a role for non-coding regulatory RNAs, such as microRNAs (miRNAs), in skin and hair disease. There is no reported information about the role of miRNAs in hair epithelial cells of AGA. OBJECTIVES: To investigate the roles of miRNAs affecting AGA in normal and patient's epithelial hair cells. METHODS: Normal follicular stem and progenitor cells, as well as follicular patient's stem cells, were sorted from hair follicles, and a miRNA q-PCR profiling to compare the expression of 748 miRNA (miRs) in sorted cells were performed. Further, we examined the putative functional implication of the most differentially regulated miRNA (miR-324-3p) in differentiation, proliferation and migration of cultured keratinocytes by qRT-PCR, immunofluorescence, and scratch assay. To explore the mechanisms underlying the effects of miR-324-3p, we used specific chemical inhibitors targeting pathways influenced by miR-324-3p. RESULT: We provide a comprehensive assessment of the "miRNome" of normal and AGA follicular stem and progenitor cells. Differentially regulated miRNA signatures highlight several miRNA candidates including miRNA-324-3p as mis regulated in patient's stem cells. We find that miR-324-3p promotes differentiation and migration of cultured keratinocytes likely through the regulation of mitogen-activated protein kinase (MAPK) and transforming growth factor (TGF)-ß signaling. Importantly, pharmacological inhibition of the TGF-ß signaling pathway using Alk5i promotes hair shaft elongation in an organ-culture system. CONCLUSION: Together, we offer a platform for understanding miRNA dynamic regulation in follicular stem and progenitor cells in baldness and highlight miR-324-3p as a promising target for its treatment.


Asunto(s)
Alopecia/genética , Folículo Piloso/crecimiento & desarrollo , MicroARNs/metabolismo , Células Madre/metabolismo , Adulto , Alopecia/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Perfilación de la Expresión Génica , Folículo Piloso/citología , Humanos , Queratinocitos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/farmacología , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
19.
Biotechnol Bioeng ; 118(2): 759-769, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33095441

RESUMEN

Growing industrial utilization of enzymes and the increasing availability of metagenomic data highlight the demand for effective methods of targeted identification and verification of novel enzymes from various environmental microbiota. Xylanases are a class of enzymes with numerous industrial applications and are involved in the degradation of xylose, a component of lignocellulose. The optimum temperature of enzymes is an essential factor to be considered when choosing appropriate biocatalysts for a particular purpose. Therefore, in silico prediction of this attribute is a significant cost and time-effective step in the effort to characterize novel enzymes. The objective of this study was to develop a computational method to predict the thermal dependence of xylanases. This tool was then implemented for targeted screening of putative xylanases with specific thermal dependencies from metagenomic data and resulted in the identification of three novel xylanases from sheep and cow rumen microbiota. Here we present thermal activity prediction for xylanase, a new sequence-based machine learning method that has been trained using a selected combination of various protein features. This random forest classifier discriminates non-thermophilic, thermophilic, and hyper-thermophilic xylanases. The model's performance was evaluated through multiple iterations of sixfold cross-validations as well as holdout tests, and it is freely accessible as a web-service at arimees.com.


Asunto(s)
Endo-1,4-beta Xilanasas , Calor , Aprendizaje Automático , Metagenoma , Microbiota , Rumen/microbiología , Animales , Bovinos/microbiología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Ovinos/microbiología
20.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198323

RESUMEN

Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/metabolismo , Proteómica/métodos , Animales , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Oncología Médica/tendencias , Ratones , Mutación , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Polisacáridos/metabolismo , Pronóstico , Proteoma , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...