Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Neuro Oncol ; 25(12): 2287-2301, 2023 12 08.
Article En | MEDLINE | ID: mdl-37486991

BACKGROUND: Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. METHODS: Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. RESULTS: EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. CONCLUSIONS: Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.


Cerebellar Neoplasms , Medulloblastoma , Humans , Child , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Cell Line, Tumor , Protein Tyrosine Phosphatases/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Tyrosine , Nuclear Proteins/genetics , Intracellular Signaling Peptides and Proteins
2.
Mol Cancer Ther ; 18(9): 1484-1496, 2019 09.
Article En | MEDLINE | ID: mdl-31285279

EYA proteins (EYA1-4) are critical developmental transcriptional cofactors that contain an EYA domain (ED) harboring Tyr phosphatase activity. EYA proteins are largely downregulated after embryogenesis but are reexpressed in cancers, and their Tyr phosphatase activity plays an important role in the DNA damage response and tumor progression. We previously identified a class of small-molecule allosteric inhibitors that specifically inhibit the Tyr phosphatase activity of EYA2. Herein, we determined the crystal structure of the EYA2 ED in complex with NCGC00249987 (a representative compound in this class), revealing that it binds to an induced pocket distant from the active site. NCGC00249987 binding leads to a conformational change of the active site that is unfavorable for Mg2+ binding, thereby inhibiting EYA2's Tyr phosphatase activity. We demonstrate, using genetic mutations, that migration, invadopodia formation, and invasion of lung adenocarcinoma cells are dependent on EYA2 Tyr phosphatase activity, whereas growth and survival are not. Further, we demonstrate that NCGC00249987 specifically targets migration, invadopodia formation, and invasion of lung cancer cells, but that it does not inhibit cell growth or survival. The compound has no effect on lung cancer cells carrying an EYA2 F290Y mutant that abolishes compound binding, indicating that NCGC00249987 is on target in lung cancer cells. These data suggest that the NCGC00249987 allosteric inhibitor can be used as a chemical probe to study the function of the EYA2 Tyr phosphatase activity in cells and may have the potential to be developed into an antimetastatic agent for cancers reliant on EYA2's Tyr phosphatase activity.


Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/pharmacology , Lung Neoplasms/metabolism , Nuclear Proteins/antagonists & inhibitors , Protein Tyrosine Phosphatases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Allosteric Regulation , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/pathology , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
3.
Mol Cancer Res ; 15(4): 382-394, 2017 04.
Article En | MEDLINE | ID: mdl-28108622

TRAIL is a potent death-inducing ligand that mediates apoptosis through the extrinsic pathway and serves as an important endogenous tumor suppressor mechanism. Because tumor cells are often killed by TRAIL and normal cells are not, drugs that activate the TRAIL pathway have been thought to have potential clinical value. However, to date, most TRAIL-related clinical trials have largely failed due to the tumor cells having intrinsic or acquired resistance to TRAIL-induced apoptosis. Previous studies to identify resistance mechanisms have focused on targeted analysis of the canonical apoptosis pathway and other known regulators of TRAIL receptor signaling. To identify novel mechanisms of TRAIL resistance in an unbiased way, we performed a genome-wide shRNA screen for genes that regulate TRAIL sensitivity in sublines that had been selected for acquired TRAIL resistance. This screen identified previously unknown mediators of TRAIL resistance including angiotensin II receptor 2, Crk-like protein, T-Box Transcription Factor 2, and solute carrier family 26 member 2 (SLC26A2). SLC26A2 downregulates the TRAIL receptors, DR4 and DR5, and this downregulation is associated with resistance to TRAIL. Its expression is high in numerous tumor types compared with normal cells, and in breast cancer, SLC26A2 is associated with a significant decrease in relapse-free survival.Implication: Our results shed light on novel resistance mechanisms that could affect the efficacy of TRAIL agonist therapies and highlight the possibility of using these proteins as biomarkers to identify TRAIL-resistant tumors, or as potential therapeutic targets in combination with TRAIL. Mol Cancer Res; 15(4); 382-94. ©2017 AACR.


Anion Transport Proteins/genetics , Drug Resistance, Neoplasm , Neoplasms/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Anion Transport Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , RNA, Small Interfering/genetics , Sulfate Transporters , Up-Regulation
4.
J Virol ; 89(14): 7425-7, 2015 Jul.
Article En | MEDLINE | ID: mdl-25948748

Infection of human neurons in vitro with varicella-zoster virus (VZV) at a low multiplicity of infection does not result in a cytopathic effect (CPE) within 14 days postinfection (dpi), despite production of infectious virus. We showed that by 28 dpi a CPE ultimately developed in infected neurons and that interferon gamma inhibited not only the CPE but also VZV DNA accumulation, transcription, and virus production, thereby prolonging the life of VZV-infected neurons.


Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/physiology , Interferon-gamma/immunology , Neurons/physiology , Neurons/virology , Cell Survival , Cytopathogenic Effect, Viral , Humans , Virus Replication/drug effects
...