Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Phys Chem Chem Phys ; 26(21): 15332-15337, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748511

Catalytic conversion of NO has long been a focus of atmospheric pollution control and diesel vehicle exhaust treatment. Rhodium is one of the most effective metals for catalyzing NO reduction, and understanding the nature of the active sites and underlying mechanisms can help improve the design of Rh-based catalysts towards NO reduction. In this work, we investigated the detailed catalytic mechanisms for the direct reduction of NO to N2 by fullerene-supported rhodium clusters, C60Rh4+, with density functional theory calculations. We found that the presence of C60 facilitates the smooth reduction of NO into N2 and O2, as well as their subsequent desorption, recovering the catalyst C60Rh4+. Such a process fails to be completed by free Rh4+, emphasizing the critical importance of C60 support. We attribute the novel performance of C60Rh4+ to the electron sponge effect of C60, providing useful guidance for designing efficient catalysts for the direct reduction of NO.

2.
J Am Chem Soc ; 146(23): 15787-15795, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38738985

The encapsulation of different guest molecules by their different recognition domains of proteins leads to selective binding, catalysis, and transportation. Synthetic hosts capable of selectively binding different guests in their different cavities to mimic the function of proteins are highly desirable but challenging. Here, we report three ladder-shaped, triple-cavity metallacages prepared by multicomponent coordination-driven self-assembly. Interestingly, the porphyrin-based metallacage is capable of heteroleptic encapsulation of fullerenes (C60 or C70) and coronene using its different cavities, allowing distinct allosteric recognition of coronene upon the addition of C60 or C70. Owing to the different binding affinities of the cavities, the metallacage hosts one C60 molecule in the central cavity and two coronene units in the side cavities, while encapsulating two C70 molecules in the side cavities and one coronene molecule in the central cavity. The rational design of multicavity assemblies that enable heteroleptic encapsulation and allosteric recognition will guide the further design of advanced supramolecular constructs with tunable recognition properties.

3.
Acc Chem Res ; 57(12): 1670-1683, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38654495

ConspectusBuckminsterfullerene, C60, was discovered through a prominent mass peak containing 60 atoms produced from laser vaporization of graphite, driven by Kroto's interest in understanding the formation mechanisms of carbon-containing molecules in space. Inspired by the geodesic dome-shaped architecture designed by Richard Buckminster Fuller, after whom the particle was named, C60 was found to have a football-shaped structure comprising 20 hexagons and 12 pentagons. It sparked worldwide interest in understanding this new carbon allotrope, resulting in the awarding of the Noble Prize in Chemistry to Smalley, Kroto, and Curl in 1996.Intrinsically, C60 is an exceptional species because of its high stability and electron-accepting ability and its structural tunability by decorating or substituting either on its exterior surface or interior hollow cavity. For example, metal-decorated fullerene complexes have found important applications ranging from superconductivity, nanoscale electronic devices, and organic photovoltaic cells to catalysis and biomedicine. Compared to the large body of studies on atoms and molecules encapsulated by C60, studies on the exteriorly modified fullerenes, i.e., exohedral fullerenes, are scarcer. Surprisingly, to date, uncertainty exists about a fundamental question: what is the preferable exterior binding site of different kinds of single atoms on the C60 surface?In recent years, we have developed an experimental protocol to synthesize the desired fullerene-metal clusters and to record their infrared spectra via messenger-tagged infrared multiple photon dissociation spectroscopy. With complementary quantum chemical calculations and molecular dynamics simulations, we determined that the most probable binding site of a metal, specifically a vanadium cation, on C60 is above a pentagonal center in an η5 fashion. We explored the bonding nature between C60 and V+ and revealed that the high thermal stability of this cluster originates from large orbital and electrostatic interactions. Through comparing the measured infrared spectra of [C60-Metal]+ with the observational Spitzer data of several fullerene-rich planetary nebulae, we proposed that the complexes formed by fullerene and cosmically abundant metals, for example, iron, are promising carriers of astronomical unidentified spectroscopic features. This opens the door for a real consideration of Kroto's 30-year-old hypothesis that complexes involving cosmically abundant elements and C60 exhibit strong charge-transfer bands, similar to those of certain unidentified astrophysical spectroscopic features. We compiled a VibFullerene database and extracted a set of vibrational frequencies and intensities for fullerene derivatives to facilitate their potential detection by the James Webb Space Telescope. In addition, we showed that upon infrared irradiation C60V+ can efficiently catalyze water splitting to generate H2. This finding is attributed to the novel geometric-electronic effects of C60, acting as "hydrogen shuttle" and "electron sponge", which illustrates the important role of carbon-based supports in single-atom catalysts. Our work not only unveils the basic structures and bonding nature of fullerene-metal clusters but also elucidates their potential importance in astrophysics, astrochemistry, and catalysis, showing the multifaceted character of this class of clusters. More exciting and interesting aspects of the fullerene-metal clusters, such as ultrafast charge-transfer dynamics between fullerene and metal and their relevance to designing hybrid fullerene-metal junctions for electronic devices, are awaiting exploration.

4.
Phys Chem Chem Phys ; 26(18): 13622-13633, 2024 May 08.
Article En | MEDLINE | ID: mdl-38546512

Detection of complex organic species in space has been one of the biggest challenges of the astrophysical community since the beginning of space exploration, with C60-fullerene representing one of the largest molecules so far detected. The presence of small metal-containing organic molecules, like MgNC or CaCN, in space, promoted the idea that C60 may also interact with metals and form metallofullerenes based on the fact that in certain circumstellar and interstellar environments, the ingredients for the formation of metallofullerenes, i.e., metal and fullerenes, are abundant. In this perspective, we summarized the current effort to explore the presence of metallofullerenes in space, which started soon after the discovery of fullerenes about 40 years ago. Several implications of astrophysical phenomena were briefly discussed and shown to be addressable as the possible consequence of metallofullerenes' presence. We highlighted the spectral fingerprints that might be followed to achieve the future detection of cosmic metallofullerenes from a combined effort of laboratory and quantum chemical calculations. These results are expected to gain great importance with the James Webb Space Telescope (JWST), whose capability of unprecedented high sensitivity and high spectral resolution in the far- to mid-infrared range could aid the unequivocal detection of metallofullerenes in space.

5.
Angew Chem Int Ed Engl ; 63(14): e202319488, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38305830

The development of novel materials for highly efficient and selective photocatalysis is crucial for their practical applications. Herein, we employ the host-guest chemistry of porphyrin-based metallacages to regulate the generation of reactive oxygen species and further use them for the selective photocatalytic oxidation of benzyl alcohols. Upon irradiation, the sole metallacage (6) can generate singlet oxygen (1O2) effectively via excited energy transfer, while its complex with C70 (6⊃C70) opens a pathway for electron transfer to promote the formation of superoxide anion (O2⋅-), producing both 1O2 and O2⋅-. The addition of 4,4'-bipyridine (BPY) to complex 6⊃C70 forms a more stable complex (6⊃BPY) via the coordination of the Zn-porphyrin faces of 6 and BPY, which drives fullerenes out of the cavities and restores the ability of 1O2 generation. Therefore, benzyl alcohols are oxidized into benzyl aldehydes upon irradiation in the presence of 6 or 6⊃BPY, while they are oxidized into benzoic acids when 6⊃C70 is employed as the photosensitizing agent. This study demonstrates a highly efficient strategy that utilizes the host-guest chemistry of metallacages to regulate the generation of reactive oxygen species for selective photooxidation reactions, which could promote the utilization of metallacages and their related host-guest complexes for photocatalytic applications.

6.
J Am Chem Soc ; 145(40): 22243-22251, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37757468

Buckminsterfullerene C60 has received extensive research interest since its discovery. In addition to its interesting intrinsic properties of exceptional stability and electron-accepting ability, the broad chemical tunability by decoration or substitution on the C60-fullerene surface makes it a fascinating molecule. However, to date, there is uncertainty about the binding location of such decorations on the C60 surface, even for a single adsorbed metal atom. In this work, we report the gas-phase synthesis of the C60V+ complex and its in situ characterization by mass spectrometry and infrared spectroscopy with the help of quantum chemical calculations and molecular dynamics simulations. We identify the most probable binding position of a vanadium cation on C60 above a pentagon center in an η5-fashion, demonstrate a high thermal stability for this complex, and explore the bonding nature between C60 and the vanadium cation, revealing that large orbital and electrostatic interactions lie at the origin of the stability of the η5-C60V+ complex.

7.
World J Clin Cases ; 11(14): 3158-3166, 2023 May 16.
Article En | MEDLINE | ID: mdl-37274029

BACKGROUND: Brain gliomas are malignant tumors with high postoperative recurrence rates. Early prediction of prognosis using specific indicators is of great significance. AIM: To assess changes in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) levels in patients with glioma pre-and postoperatively. METHODS: Between June 2018 and June 2021, 91 patients with gliomas who underwent surgery at our hospital were enrolled in the glioma group. Sixty healthy volunteers were included in the control group. Serum UCH-L1 and GFAP levels were measured in peripheral blood collected from patients with glioma before and 3 d after surgery. UCH-L1 and GFAP levels in patients with glioma with different clinicopathological characteristics were compared before and after surgery. The patients were followed-up until February 2022. Postoperative glioma recurrence was recorded to determine the serum UCH-L1 and GFAP levels, which could assist in predicting postoperative glioma recurrence. RESULTS: UCH-L1 and GFAP levels in patients with glioma decreased significantly 3 d after surgery compared to those before therapy (P < 0.05). However, UCH-L1 and GFAP levels in the glioma group were significantly higher than those in the control group before and after surgery (P < 0.05). There were no statistically significant differences in preoperative serum UCH-L1 and GFAP levels among patients with glioma according to sex, age, pathological type, tumor location, or number of lesions (P > 0.05). Serum UCH-L1 and GFAP levels were significantly lower in the patients with WHO grade I-II tumors than in those with grade III-IV tumors (P < 0.05). Serum UCH-L1 and GFAP levels were lower in the patients with tumor diameter ≤ 5 cm than in those with diameter > 5 cm, in which the differences were statistically significant (P < 0.05). Glioma recurred in 22 patients. The preoperative and 3-d postoperative serum UCH-L1 and GFAP levels were significantly higher in the recurrence group than these in the non-recurrence group (P < 0.05). Receiver operating characteristic curves were plotted. The areas under the curves of preoperative serum UCH-L1 and GFAP levels for predicting postoperative glioma recurrence were 0.785 and 0.775, respectively. However, the efficacy of serum UCH-L1 and GFAP levels 3 d after surgery in predicting postoperative glioma recurrence was slightly lower compared with their preoperative levels. CONCLUSION: UCH-L1 and GFAP efficiently reflected the development and recurrence of gliomas and could be used as potential indicators for the recurrence and prognosis of glioma.

8.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article En | MEDLINE | ID: mdl-36675196

L-cysteine S-sulfate, Cys-SSO3H, and their derivatives play essential roles in biological chemistry and pharmaceutical synthesis, yet their intrinsic molecular properties have not been studied to date. In this contribution, the deprotonated anion [cysS-SO3]- was introduced in the gas phase by electrospray and characterized by size-selected, cryogenic, negative ion photoelectron spectroscopy. The electron affinity of the [cysS-SO3]• radical was determined to be 4.95 ± 0.10 eV. In combination with theoretical calculations, it was found that the most stable structure of [cysS-SO3]- (S1) is stabilized via three intramolecular hydrogen bonds (HBs); i.e., one O-H⋯⋯N between the -COOH and -NH2 groups, and two N-H⋯⋯O HBs between -NH2 and -SO3, in which the amino group serves as both HB acceptor and donor. In addition, a nearly iso-energetic conformer (S2) with the formation of an O-H⋯⋯N-H⋯⋯O-S chain-type binding motif competes with S1 in the source. The most reactive site of the molecule susceptible for electrophilic attacks is the linkage S atom. Theoretically predicted infrared spectra indicate that O-H and N-H stretching modes are the fingerprint region (2800 to 3600 cm-1) to distinguish different isomers. The obtained information lays out a foundation to better understand the transformation and structure-reactivity correlation of Cys-SSO3H in biologic settings.


Cysteine , Sulfates , Catalytic Domain , Electrons , Anions
9.
Chemphyschem ; 24(8): e202200835, 2023 Apr 17.
Article En | MEDLINE | ID: mdl-36622739

Historically, Dewar-Chatt-Duncanson (DCD) model is a heuristic device to advance the development of organometallic chemistry and deepen our understanding of the metal-ligand bonding nature. Zeise's ion, the first man-made organometallic compound and a quintessential transition metal-olefin complex, was qualitatively explained using the DCD bonding scheme in 1950s. In this work, we quantified the explicit contributions of the σ donation and π back-donation to the metal-ligand bonding in Zeise and its family ions, [PtX3 L]- (X=F, Cl, Br, I, and At; L=C2 H4 , CO, and N2 ), using state-of-the-art quantum chemical calculations and energy decomposition analysis. The relative importance of the σ donation and π back-donation depends on both X and L, with [PtCl3 (C2 H4 )]- being a critical case in which the σ donation is marginally weaker than the π back-donation. The changes along this series are controlled by the energy levels of the correlated molecular orbitals of PtX3 - and ligand L. This study deepens our understanding of the bonding properties for transition metal complexes beyond the qualitative description of the DCD model.

10.
Phys Chem Chem Phys ; 25(1): 171-182, 2022 Dec 21.
Article En | MEDLINE | ID: mdl-36477168

We report on the magnetic properties of small neutral suboxide ConOm (n = 5-18 and m = 0-10, m ≤ n) clusters produced by laser vaporisation and gas aggregation. Their magnetism is probed experimentally by means of Stern-Gerlach magnetic deflection. The results imply that the cobalt atoms couple ferromagnetically not only in pure Con clusters, as known from previous investigations, but also in their oxidized counterparts. It was found that the magnetic moment per cobalt atom is mostly enhanced in the oxide clusters with respect to the pure cobalt clusters and generally increases with the oxygen content in the studied composition range. The spin magnetism of selected clusters is also investigated by density functional theory (DFT) calculations. The computations allow to attribute the effect of oxidation on the magnetic response of the ConOm clusters to electron transfer from the cobalt 3d and 4s valence orbitals to oxygen. The cobalt 3d levels preferentially donate electrons of minority spin, but both spin orientations are involved in the transfer of cobalt 4s electrons.

11.
J Phys Chem A ; 126(16): 2541-2550, 2022 Apr 28.
Article En | MEDLINE | ID: mdl-35436403

Vibronic spectra of 3-fluorothioanisole (3FTA) in the first electronic excited state (S1) and the cationic ground state (D0) have been obtained by one-color resonant two-photon ionization (1C-R2PI) and mass-analyzed threshold ionization (MATI) spectroscopy. Spectroscopic measurements and theoretical calculations indicate that both cis- and trans-rotamers of the 3FTA molecule are stable and coexist in the S0 (the electronic ground state) and D0 states, and the cis-rotamer is shown to be slightly more stable than the trans-rotamer. In the S1 state, theoretical calculations predict a stable gauche-structure of 3FTA, manifested by the observation of strong activation of the vibrational modes involving the motion of the -SCH3 group in the low-frequency regions of the 1C-R2PI and MATI spectra. The electronic excitation energy from the S0 state to the S1 state (E1) and the adiabatic ionization energy (IE) are respectively determined to be 34 820 ± 3 and 65 468 ± 5 cm-1 for cis-3FTA, and those of the trans-rotamer are respectively determined to be 35 047 ± 3 and 65 644 ± 5 cm-1. The structural properties of the stable rotamers of 3FTA and their comparison with other F- and Cl-substituted thioanisole derivatives are discussed as well.

12.
ACS Omega ; 7(10): 8456-8465, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35309466

Resonance-enhanced two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) spectra are measured for the cis- and trans-3-chlorothioanisole (3ClTA). The first electronic excitation energy (E 1) and the adiabatic ionization energy (IE) of the cis-rotamer are determined to be 33 959±3 and 65 326±5 cm-1, respectively, and those of the trans-rotamer are determined to be 34102±3 and 65 471±5 cm-1, respectively. Density functional theory (DFT) calculations confirm that both the cis- and trans-rotamers of 3ClTA are stable and coexist in their respective S0, S1, and D0 states. Both rotamers adopt planar structures with cis- being slightly more stable than trans- in the respective S0, S1, and D0 states. The conformation, substitution, and isotope effects on the molecular structure, active vibrations, and electronic transition and ionization energies of 3ClTA are analyzed.

13.
Nanoscale Adv ; 3(21): 6197-6205, 2021 Oct 27.
Article En | MEDLINE | ID: mdl-34765870

The physicochemical properties of small metal clusters strongly depend on their precise geometry. Determining such geometries, however, is challenging, particularly for clusters formed by multiple elements. In this work, we combine infrared multiple photon dissociation spectroscopy and density functional theory calculations to investigate the lowest-energy structures of Pd doped gold clusters, PdAu n-1 + (n ≤ 10). The high-quality experimental spectra allow for an unambiguous determination of the structures adopted by the clusters. Our results show that the Pd-Au interaction is so large that the structures of PdAu n-1 + and Au n + are very different. Pd doping induces a 2D to 3D transition at much smaller cluster sizes than for pure Au n + clusters. PdAu n-1 + clusters are three-dimensional from n = 4, whereas for Au n + this transition only takes place at n = 7. Despite the strong Au-Pd interaction, the Au n-1 + cluster geometries remain recognizable in PdAu n-1 + up to n = 7. This is particularly clear for PdAu6 +. In PdAu8 + and PdAu9 +, Pd triggers major rearrangements of the Au clusters, which adopt pyramidal shapes. For PdAu4 + we find a geometry that was not considered in previous studies, and the geometry found for PdAu8 + does not correspond to the lowest-energy structure predicted by DFT, suggesting kinetic trapping during formation. This work demonstrates that even with the continuous improvement of computational methods, unambiguous assignment of cluster geometries still requires a synergistic approach, combining experiment and computational modelling.

14.
Med Sci Monit ; 27: e933469, 2021 Oct 10.
Article En | MEDLINE | ID: mdl-34628461

BACKGROUND The aim of the present study was to investigate the potential anticonvulsant effect of methylene blue (MB) in a kainic acid (KA)-induced status epilepticus (SE) model. The effects of MB on levels of oxidative stress and glutamate (Glu) also were explored. MATERIAL AND METHODS Sixty C57BL/6 mice were randomly divided into 5 equal-sized groups: (1) controls; (2) KA; (3) MB 0.5 mg/kg+KA; (4) MB 1 mg/kg+KA; and (5) vehicle+KA. The SE model was established by intra-amygdala microinjection of KA. Behavioral observations and simultaneous electroencephalographic records of the seizures in different groups were analyzed to determine the potential anticonvulsant effect of MB. The influences of MB on oxidative stress markers and glutamate were also detected to explore the possible mechanism. RESULTS MB afforded clear protection against KA-induced acute seizure, as measured by the delayed latency of onset of generalized seizures and SE, decreased percentage of SE, and increased survival rate in mice with acute epilepsy. MB markedly increased the latency to first onset of epileptiform activity and decreased the average duration of epileptiform events, as well as the percentage of time during which the epileptiform activity occurred. Administration of MB prevented KA-induced deterioration of oxidative stress markers and Glu. CONCLUSIONS MB is protective against acute seizure in SE. This beneficial effect may be at least partially related to its potent antioxidant ability and influence on Glu level.


Antioxidants/pharmacology , Methylene Blue/pharmacology , Neuroprotective Agents/pharmacology , Status Epilepticus/prevention & control , Amygdala/drug effects , Amygdala/metabolism , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Electrodes, Implanted , Electroencephalography , Glutamic Acid/analysis , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Kainic Acid/toxicity , Male , Methylene Blue/therapeutic use , Mice , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Status Epilepticus/chemically induced , Status Epilepticus/diagnosis , Status Epilepticus/pathology
15.
Angew Chem Int Ed Engl ; 60(52): 27095-27101, 2021 Dec 20.
Article En | MEDLINE | ID: mdl-34610202

Water splitting is an important source of hydrogen, a promising future carrier for clean and renewable energy. A detailed understanding of the mechanisms of water splitting, catalyzed by supported metal atoms or nanoparticles, is essential to improve the design of efficient catalysts. Here, we report an infrared spectroscopic study of such a water splitting process, assisted by a C60 supported vanadium atom, C60 V+ +H2 O→C60 VO+ +H2 . We probe both the entrance channel complex C60 V+ (H2 O) and the end product C60 VO+ , and observe the formation of H2 as a result from resonant infrared absorption. Density functional theory calculations exploring the detailed reaction pathway reveal that a quintet-to-triplet spin crossing facilitates the water splitting reaction by C60 -supported V+ , whereas this reaction is kinetically hindered on the isolated V+ ion by a high energy barrier. The C60 support has an important role in lowering the reaction barrier with more than 70 kJ mol-1 due to a large orbital overlap of one water hydrogen atom with one carbon atom of the C60 support. This fundamental insight in the water splitting reaction by a C60 -supported single vanadium atom showcases the importance of supports in single atom catalysts by modifying the reaction potential energy surface.

16.
ACS Omega ; 6(29): 18711-18718, 2021 Jul 27.
Article En | MEDLINE | ID: mdl-34337210

To understand the influence of one-coordinated Zn and Se atoms on the structures, electronic, and optical properties of ZnSe clusters, we investigate the Zn37Se20 clusters employing first-principles theoretical calculations. The Zn37Se20 cluster, constructed from the InP nanocrystal structure, possesses a Zn21Se20 core and 16 one-coordinated surface atoms. The effect of one-coordinated atoms is studied by adding or removing one-coordinated atoms of the Zn37Se20 cluster. The calculations show that the modifications of one-coordinated atoms change slightly the coordination states and bond lengths of the atoms on the cluster surface. The clusters with the same core structure and different amounts of one-coordinated atoms have similar optical spectra, suggesting the importance of the cluster core structure in their optical properties.

17.
Chemphyschem ; 22(21): 2240-2246, 2021 11 04.
Article En | MEDLINE | ID: mdl-34402158

Superelectrophilic monoanions [B12 (BO)11 ]- and [B12 (OBO)11 ]- , generated from stable dianions [B12 (BO)12 ]2- and [B12 (OBO)12 ]2- , show great potential for binding with noble gases (Ngs). The binding energies, quantum theory of atoms in molecules (QTAIM), natural population analysis (NPA), energy decomposition analysis (EDA), and electron localization function (ELF) were carried out to understand the B-Ng bond in [B12 (BO)11 Ng]- and [B12 (OBO)11 Ng]- . The calculated results reveal that heavier noble gases (Ar, Kr, and Xe) bind covalently with both [B12 (BO)11 ]- and [B12 (OBO)11 ]- with large binding energies, making them potentially feasible to be synthesized. Only [B12 (OBO)11 ]- could form a covalent bond with helium or neon but the small binding energy of [B12 (OBO)11 He]- may pose a challenge for its experimental detection.

18.
J Phys Chem A ; 125(9): 1870-1879, 2021 Mar 11.
Article En | MEDLINE | ID: mdl-33635065

Two-photon absorption (TPA) enables the excitation of molecules by comparatively lower energy photons with longer penetration depth and higher spatial precision control, which advances the uses of organic molecules in various applications. In this work, we report two simple all-organic molecules C42H33N (compound 3) and C138H168N4 (compound 14) with strong TPA and fluorescent emission activity. Density functional theory calculations show that the enhanced oscillator strengths could be responsible for improved TPA and emission activity for compound 14 compared to those for 3. The degradation of C138H168N4 under focused laser illumination without circulation is almost negligible within 5 h, making it a candidate for laser dyes. Solid-state measurements confirm the presence of a direct band gap for electron transition that determines the channel to release the absorbed energy and functionality of the studied molecules. This work emphasizes that a high TPA cross-section and selectable energy relaxation (fluorescent emission or heat dissipation) are equally important to the design of advanced functional TPA molecules.

19.
Molecules ; 27(1)2021 Dec 21.
Article En | MEDLINE | ID: mdl-35011240

Carbonic acid is an important species in a variety of fields and has long been regarded to be non-existing in isolated state, as it is thermodynamically favorable to decompose into water and carbon dioxide. In this work, we systematically studied a novel ionic complex [H2CO3·HSO4]- using density functional theory calculations, molecular dynamics simulations, and topological analysis to investigate if the exotic H2CO3 molecule could be stabilized by bisulfate ion, which is a ubiquitous ion in various environments. We found that bisulfate ion could efficiently stabilize all the three conformers of H2CO3 and reduce the energy differences of isomers with H2CO3 in three different conformations compared to the isolated H2CO3 molecule. Calculated isomerization pathways and ab initio molecular dynamics simulations suggest that all the optimized isomers of the complex have good thermal stability and could exist at finite temperatures. We also explored the hydrogen bonding properties in this interesting complex and simulated their harmonic infrared spectra to aid future infrared spectroscopic experiments. This work could be potentially important to understand the fate of carbonic acid in certain complex environments, such as in environments where both sulfuric acid (or rather bisulfate ion) and carbonic acid (or rather carbonic dioxide and water) exist.

20.
Angew Chem Int Ed Engl ; 60(9): 4756-4763, 2021 Feb 23.
Article En | MEDLINE | ID: mdl-33200509

A mass spectrometric study of the reactions of vanadium cationic clusters with methanol in a low-pressure collision cell is reported. For comparison, the reaction of methanol with cobalt cationic clusters was studied. For vanadium, the main reaction products are fully dehydrogenated species, and partial dehydrogenation and non-dehydrogenation species are observed as minors, for which the relative intensities increase with cluster size and also at low cluster source temperature cooled by liquid nitrogen; no dehydrogenation products were observed for cobalt clusters. Quantum chemical calculations explored the reaction pathways and revealed that the fully dehydrogenation products of the reaction between Vn + and methanol are Vn (C)(O)+ , in which C and O are separated owing to the high oxophilicity of vanadium. The partial dehydrogenation and non-dehydrogenation species were verified to be reaction intermediates along the reaction pathway, and their most probable structures were proposed.

...