Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Neurobiol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963532

RESUMEN

The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.

2.
Int J Biol Macromol ; 273(Pt 1): 133084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871104

RESUMEN

Salinity hinders plant growth and development, resulting in reduced crop yields and diminished crop quality. Nitric oxide (NO) and brassinolides (BR) are plant growth regulators that coordinate a plethora of plant physiological responses. Nonetheless, the way in which these factors interact to affect salt tolerance is not well understood. BR is perceived by the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and its co-receptor BRI1-associated kinase 1 (BAK1) to form the receptor complex, eventually inducing BR-regulated responses. To response stress, a wide range of NO-mediated protein modifications is undergone in eukaryotic cells. Here, we showed that BR participated in NO-enhanced salt tolerance of tomato seedlings (Solanum lycopersicum cv. Micro-Tom) and NO may activate BR signaling under salt stress, which was related to NO-mediated S-nitrosylation. Further, in vitro and in vivo results suggested that BAK1 (SERK3A and SERK3B) was S-nitrosylated, which was inhibited under salt condition and enhanced by NO. Accordingly, knockdown of SERK3A and SERK3B reduced the S-nitrosylation of BAK1 and resulted in a compromised BR response, thereby abolishing NO-induced salt tolerance. Besides, we provided evidence for the interaction between BRI1 and SERK3A/SERK3B. Meanwhile, NO enhanced BRI1-SERK3A/SERK3B interaction. These results imply that NO-mediated S-nitrosylation of BAK1 enhances the interaction BRI1-BAK1, facilitating BR response and subsequently improving salt tolerance in tomato. Our findings illustrate a mechanism by which redox signaling and BR signaling coordinate plant growth in response to abiotic stress.


Asunto(s)
Óxido Nítrico , Proteínas de Plantas , Tolerancia a la Sal , Plantones , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Plantones/metabolismo , Tolerancia a la Sal/genética , Óxido Nítrico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brasinoesteroides/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Transducción de Señal
3.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696020

RESUMEN

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Asunto(s)
Clorofila , Cucumis sativus , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Estrés Salino , Tolerancia a la Sal , Plantones , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Cucumis sativus/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Tolerancia a la Sal/genética , Estrés Salino/genética , Clorofila/metabolismo , Fotosíntesis/genética , Fotosíntesis/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Antioxidantes/metabolismo , Malondialdehído/metabolismo , Plantas Modificadas Genéticamente , Silenciador del Gen
4.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649857

RESUMEN

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Solanum lycopersicum , Factores de Transcripción , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Giberelinas/metabolismo , Regiones Promotoras Genéticas/genética , Etilenos/metabolismo
5.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279340

RESUMEN

Brassinosteroids (BRs) are a group of polyhydroxylated steroids for plant growth and development, regulating numerous physiological and biochemical processes and participating in multi-pathway signaling in plants. 24-Epibrassinolide (EBR) is the most commonly used BR for the investigation of the effects of exogenous steroidal phytohormones on plant physiology. Although SlSERK3B is considered a gene involved in the brassinosteroid (BR) signaling pathway, its specific role in plant growth and development has not been reported in detail. In this study, tomato (Solanum lycopersicum L.) seedlings treated with 0.05 µmol L-1 EBR showed a significant increase in plant height, stem diameter, and fresh weight, demonstrating that BR promotes the growth of tomato seedlings. EBR treatment increased the expression of the BR receptor gene SlBRI1, the co-receptor gene SlSERK3A and its homologs SlSERK3B, and SlBZR1. The SlSERK3B gene was silenced by TRV-mediated virus-induced gene silencing (VIGS) technology. The results showed that both brassinolide (BL) content and BR synthesis genes were significantly up-regulated in TRV-SlSERK3B-infected seedlings compared to the control seedlings. In contrast, plant height, stem diameter, fresh weight, leaf area and total root length were significantly reduced in silenced plants. These results suggest that silencing SlSERK3B may affect BR synthesis and signaling, thereby affecting the growth of tomato seedlings. Furthermore, the photosynthetic capacity of TRV-SlSERK3B-infected tomato seedlings was reduced, accompanied by decreased photosynthetic pigment content chlorophyll fluorescence, and photosynthesis parameters. The expression levels of chlorophyll-degrading genes were significantly up-regulated, and carotenoid-synthesising genes were significantly down-regulated in TRV-SlSERK3B-infected seedlings. In conclusion, silencing of SlSERK3B inhibited BR signaling and reduced photosynthesis in tomato seedlings, and this correlation suggests that SlSERK3B may be related to BR signaling and photosynthesis enhancement.


Asunto(s)
Plantones , Solanum lycopersicum , Solanum lycopersicum/genética , Fotosíntesis , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Crecimiento y Desarrollo
6.
Plant Physiol Biochem ; 207: 108329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184883

RESUMEN

Abiotic stress is one of the main threats affecting crop growth and production. Nitric oxide (NO), an important signaling molecule involved in wide range of plant growth and development as well as in response to abiotic stress. NO can exert its biological functions through protein S-nitrosylation, a redox-based posttranslational modification by covalently adding NO moiety to a reactive cysteine thiol of a target protein to form an S-nitrosothiol (SNO). Protein S-nitrosylation is an evolutionarily conserved mechanism regulating multiple aspects of cellular signaling in plant. Recently, emerging evidence have elucidated protein S-nitrosylation as a modulator of plant in responses to abiotic stress, including salt stress, extreme temperature stress, light stress, heavy metal and drought stress. In addition, significant mechanism has been made in functional characterization of protein S-nitrosylated candidates, such as changing protein conformation, and the subcellular localization of proteins, regulating protein activity and influencing protein interactions. In this study, we updated the data related to protein S-nitrosylation in plants in response to adversity and gained a deeper understanding of the functional changes of target proteins after protein S-nitrosylation.


Asunto(s)
Óxido Nítrico , Plantas , Plantas/metabolismo , Óxido Nítrico/metabolismo , Desarrollo de la Planta , Transducción de Señal , Estrés Fisiológico , Procesamiento Proteico-Postraduccional
7.
Neuropharmacology ; 245: 109830, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38160874

RESUMEN

The ventrolateral orbital cortex (VLO) is identified as an integral component of the endogenous analgesic system comprising a spinal cord - thalamic nucleus submedius - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study investigates the effects of 5-HT5A receptor activation in the VLO on allodynia induced by spared nerve injury and formalin-evoked flinching behavior and spinal c-Fos expression in male SD rats, and further examines whether GABAergic modulation is involved in the effects evoked by VLO 5-HT5A receptor activation. We found an upregulation of 5-HT5A receptor expression in the VLO during neuropathic and inflammatory pain states. Microinjection of the non-selective 5-HT5A receptor agonist 5-CT into the VLO dose dependently alleviated allodynia, and flinching behavior and spinal c-Fos expression, which were blocked by the selective 5-HT5A receptor antagonist SB-699551. Moreover, application of the GABAA receptor antagonist bicuculline in the VLO augmented the analgesic effects induced by 5-CT in neuropathic and inflammatory pain states, whereas the GABAA receptor agonist muscimol attenuated these analgesic effects. Additionally, the 5-HT5A receptors were found to be colocalized with GABAergic neurons in the VLO. These results provide new evidence for the involvement of central 5-HT5A receptors in the VLO in modulation of neuropathic and inflammatory pain and support the hypothesis that activation of 5-HT5A receptors may inhibit the inhibitory effect of GABAergic interneurons on output neurons projecting to the PAG (GABAergic disinhibitory mechanisms), consequently activating the brainstem descending inhibitory system that depresses nociceptive transmission at the spinal cord level.


Asunto(s)
Hiperalgesia , Enfermedades del Sistema Nervioso Periférico , Ratas , Masculino , Animales , Hiperalgesia/metabolismo , Serotonina/metabolismo , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Dimensión del Dolor , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos/farmacología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Corteza Prefrontal
8.
Plant Physiol Biochem ; 203: 108075, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801738

RESUMEN

Trehalose may improve plant stress tolerance by regulating gene expression under different abiotic stresses. DNA methylation is involved in plant growth and development, but also in response to abiotic stresses. 5-azacytidine is a widely used inhibitor of DNA methylation. In this study, tomato (Solanum lycopersicum L. 'Ailsa Craig') was used as experimental material to explore the effects of trehalose and DNA methylation on the growth and development in tomato seedlings under salt stress. 10 mM trehalose, 50 µM 5-azacytidine, and their combined treatments could significantly increase growth parameters in tomato under salt stress, indicating trehalose and 5-azacytidine might play crucial roles in alleviating salt stress both synergistically and independently. Additionally, trehalose significantly down-regulated the expression of DNA methylase genes (SlDRM5, SlDRM1L1, SlCMT3 and SlCMT2) and up-regulated the expression of DNA demethylases genes under salt stress, suggesting that trehalose might regulate DNA methylation under salt stress condition. Under salt stress, trehalose and 5-azacytidine treatments enhanced antioxidant enzyme activity and induced antioxidant enzyme gene expression in tomato seedlings. Meanwhile, trehalose and 5-azacytidine increased ABA content by regulating the expression of ABA metabolism-related genes, thereby enhancing salt tolerance in tomato. Altogether, these results suggest that trehalose conferred salt tolerance in tomato seedlings probably by DNA demethylation and enhancing antioxidant capability and ABA accumulation.


Asunto(s)
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/metabolismo , Solanum lycopersicum/genética , Trehalosa , Antioxidantes/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino , Estrés Fisiológico/genética , Plantones , ADN/farmacología , Regulación de la Expresión Génica de las Plantas
9.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982350

RESUMEN

The root is an important organ for obtaining nutrients and absorbing water and carbohydrates, and it depends on various endogenous and external environmental stimulations such as light, temperature, water, plant hormones, and metabolic constituents. Auxin, as an essential plant hormone, can mediate rooting under different light treatments. Therefore, this review focuses on summarizing the functions and mechanisms of light-regulated auxin signaling in root development. Some light-response components such as phytochromes (PHYs), cryptochromes (CRYs), phototropins (PHOTs), phytochrome-interacting factors (PIFs) and constitutive photo-morphorgenic 1 (COP1) regulate root development. Moreover, light mediates the primary root, lateral root, adventitious root, root hair, rhizoid, and seminal and crown root development via the auxin signaling transduction pathway. Additionally, the effect of light through the auxin signal on root negative phototropism, gravitropism, root greening and the root branching of plants is also illustrated. The review also summarizes diverse light target genes in response to auxin signaling during rooting. We conclude that the mechanism of light-mediated root development via auxin signaling is complex, and it mainly concerns in the differences in plant species, such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), changes of transcript levels and endogenous IAA content. Hence, the effect of light-involved auxin signaling on root growth and development is definitely a hot issue to explore in the horticultural studies now and in the future.


Asunto(s)
Proteínas de Arabidopsis , Fitocromo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Reguladores del Crecimiento de las Plantas/metabolismo , Fitocromo/metabolismo , Fototransducción , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética
10.
Plants (Basel) ; 12(4)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36840294

RESUMEN

Hydrogen gas (H2) is an important molecular messenger in animal and plant cells and is involved in various aspects of plant processes, including root organogenesis induction, stress tolerance and postharvest senescence. This study investigated the effect of H2 fumigation on the quality of Lanzhou lily scales. The results indicated the H2 remarkably declined the color variation and browning degree in Lanzhou lily scales by suppressing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO). Moreover, H2 significantly alleviated the degradation of soluble proteins and soluble sugars in Lanzhou lily scales during postharvest storage, mitigating the decline in nutritional quality. This alleviating effect of H2 might be achieved by increasing the endogenous H2 concentration. Collectively, our data provide new insights into the postharvest quality reduction of Lanzhou lily scales mitigated by H2 fumigation.

11.
Mar Life Sci Technol ; 5(1): 85-93, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36713278

RESUMEN

Further insights on the secondary metabolites of a soft coral-derived fungus Aspergillus versicolor under the guidance of MS/MS-based molecular networking led to the isolation of seven known cycloheptapeptides, namely, asperversiamides A-C (1-3) and asperheptatides A-D (4-7) and an unusual pyrroloindoline-containing new cycloheptapeptide, asperpyrroindotide A (8). The structure of 8 was elucidated by comprehensive spectroscopic data analysis, and its absolute configuration was determined by advanced Marfey's method. The semisynthetic transformation of 1 into 8 was successfully achieved and the reaction conditions were optimized. Additionally, a series of new derivatives (10-19) of asperversiamide A (1) was semi-synthesized and their anti-tubercular activities were evaluated against Mycobacterium tuberculosis H37Ra. The preliminary structure-activity relationships revealed that the serine hydroxy groups and the tryptophan residue are important to the activity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00157-8.

12.
BMC Plant Biol ; 23(1): 2, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36588160

RESUMEN

BACKGROUND: Methane (CH4) and brassinosteroids (BRs) are important signaling molecules involved in a variety of biological processes in plants. RESULTS: Here, marigold (Tagetes erecta L. 'Marvel') was used to investigate the role and relationship between CH4 and BRs during adventitious root (AR) formation. The results showed a dose-dependent effect of CH4 and BRs on rooting, with the greatest biological effects of methane-rich water (MRW, CH4 donor) and 2,4-epibrassinolide (EBL) at 20% and 1 µmol L- 1, respectively. The positive effect of MRW on AR formation was blocked by brassinoazole (Brz, a synthetic inhibitor of EBL), indicating that BRs might be involved in MRW-regulated AR formation. MRW promoted EBL accumulation during rooting by up-regulating the content of campestanol (CN), cathasterone (CT), and castasterone (CS) and the activity of Steroid 5α-reductase (DET2), 22α-hydroxylase (DWF4), and BR-6-oxidase (BR6ox), indicating that CH4 could induce endogenous brassinolide (BR) production during rooting. Further results showed that MRW and EBL significantly down-regulated the content of cellulose, hemicellulose and lignin during rooting and significantly up-regulated the hydrolase activity, i.e. cmcase, xylanase and laccase. In addition, MRW and EBL also significantly promoted the activity of two major cell wall relaxing factors, xyloglucan endotransglucosylase/hydrolase (XTH) and peroxidase, which in turn promoted AR formation. While, Brz inhibited the role of MRW on these substances. CONCLUSIONS: BR might be involved in CH4-promoted AR formation by increasing cell wall relaxation.


Asunto(s)
Brasinoesteroides , Celulosa , Brasinoesteroides/farmacología , Metano/farmacología , Hidrolasas , Raíces de Plantas/fisiología
13.
Materials (Basel) ; 15(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36556596

RESUMEN

In recent years, there has been an increase in demand for pH color-changing materials. These materials can visually communicate signals to people by connecting pH changes with color information. Embedding pH indicators into fibers to create flexible color-changing materials is an effective way to develop daily wearable products. For the stability of the indicator and the indirect contact of the indicator with the human body, it is usually necessary to encapsulate it in capsules. In this study, different pH indicators (Thymol Blue-TB, Bromocresol Green-BCG, and Bromocresol Purple-BCP) were mixed into a wide-domain pH color-changing indicator and encapsulated with ethyl cellulose (EC) by the flash nanoprecipitation (FNP) method using a new-type droplet-shaped confined impinging jet mixer. The effects of flow rate, core-to-wall ratio, and mixed solution concentration on the formation of the nanocapsules were investigated. In addition, the morphology, particle size, size distribution, dispersion stability, and encapsulation efficiency were systematically studied. At a core-to-wall ratio of 1:2, a mixed solution with a concentration of 6 mg/mL and a feed flow rate of 40 mL/min produced nanocapsules with an average particle size of 141.83 ± 0.98 nm and a PDI of 0.125 ± 0.01. Furthermore, a zeta potential with a range of -31.83 ± 0.23 mV and an encapsulation efficiency of 75.20 ± 1.72% were observed at 1:2 core-to-wall ratios. It was concluded that the color of the nanocapsules continuously changed from yellow to green and green to blue when the pH range was increased from 3 to 10. The color-changing nanocapsules were then embedded into sodium alginate hydrogel fibers, resulting in the same color-changing trend (pH 3-10) as that obtained for the nanocapsules. This study can be useful for the pH monitoring of various body fluids, such as wound exudate, urine, and sweat.

14.
Plants (Basel) ; 11(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36235348

RESUMEN

Salt stress is an adverse impact on the growth and development of plants, leading to yield losses in crops. It has been suggested that nitric oxide (NO) and calcium ion (Ca2+) act as critical signals in regulating plant growth. However, their crosstalk remains unclear under stress condition. In this study, we demonstrate that NO and Ca2+ play positive roles in the growth of tomato (Lycopersicum esculentum) seedlings under salt stress. Our data show that Ca2+ channel inhibitor lanthanum chloride (LaCl3), Ca2+ chelator ethylene glycol-bis (2-aminoethylether)-N,N,N,N-tetraacetic acid (EGTA), or calmodulin (CaM) antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfona-mide hydrochloride (W-7) significantly reversed the effect of NO-promoted the growth of tomato seedlings under salt stress. We further show that NO and Ca2+ significantly decreased reactive oxygen accumulation, increased proline content, and increased the activity of antioxidant enzymes, as well as increased expression of antioxidant enzymes related genes. However, LaCl3, EGTA, and W-7 prevented the positive roles of NO. In addition, the activity of downstream target enzymes related to Ca2+/CaM was increased by NO under salt stress, while LaCl3, EGTA, and W-7 reversed this enhancement. Taken together, these results demonstrate that Ca2+/CaM might be involved in NO-alleviate salt stress.

15.
Front Pharmacol ; 13: 952804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160382

RESUMEN

Background: Previous studies have suggested that proton pump inhibitors could impair the antiplatelet effect of clopidogrel. It is uncertain whether ilaprazole affects the antiplatelet effect of clopidogrel. This study aimed to determine the drug-drug interaction between ilaprazole and clopidogrel. Methods: A randomized crossover trial of 40 healthy subjects was performed. Clopidogrel was administered alone or in combination with ilaprazole for 7 days. The maximal platelet aggregation (MPA) to 5 µmol/L adenosine diphosphate was measured by light transmission aggregometry and the platelet reactivity index (PRI) was determined by vasodilator-stimulated phosphoprotein P2Y12 assay. High on-treatment platelet reactivity (HOPR) was defined as a MPA of >40%. The inhibition of platelet aggregation (IPA) and PRI in the two phases were compared between two regimens after the last dosing. Results: IPA was comparable between the two regimens at 0, 10 and 24 h (p > 0.05), but higher at 4 h in the clopidogrel alone regimen compared with that in the combined treatment regimen (75.66 ± 18.44% vs. 70.18 ± 17.67%, p = 0.031). The inhibition of PRI was comparable between the two regimens at 0 and 24 h. There were no significant differences in the area under the time-IPA% curve (AUC) or the incidence of HOPR at all time-points between the two regimens. Conclusion: In healthy subjects, ilaprazole has limited effect on the pharmacodynamics of clopidogrel and it may not be clinically relevant. Clinical Trial Registration: [www.chictr.org.cn], identifier [ChiCTR2000031482].

16.
Mol Biol Rep ; 49(12): 11327-11340, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35906509

RESUMEN

BACKGROUND: Carbon monoxide (CO) has been reported to be participated in adventitious rooting. However, knowledge about the interrelationship between CO and phytohormones during rooting is obscure. The molecular mechanism of CO-induced rooting is currently unclear. METHODS AND RESULTS: The roles of CO in adventitious rooting in Cucumis sativus L. at the transcriptional level were investigated. The results show that 10 µM hematin (a CO donor) has a significant positive effect on adventitious rooting in cucumber. A total of 1792 differentially expressed genes (DEGs; 1103 up-regulated and 689 down-regulated) were identified in hematin treatment by RNA sequencing analysis. There were 37, 18 and 19 DEGs significantly enriched in plant hormone signal transduction, sucrose and starch metabolism, and phenylalanine metabolism, respectively. Both transcriptome and real-time quantitative PCR results showed that the expressions of AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A and TIF9 promoted the accumulation of IAA, BR, JA and SA in plant hormone signal transduction. The up-regulation of HK3, TPPF, otsB, TPS7, TPS9 and the down-regulation of AGPS1, AGPS3 increased the content of starch and total sugar by mediating the activity of some critical enzymes, including HK, TPS, TPP and AGP. PER47, PER61, PER24, PER66, PER4 and CCR2 increased the lignin content. CONCLUSION: Our results suggest that CO could promote the accumulation of plant hormones, starch, sugar and lignin during adventitious rooting by regulating the expression of some related genes, including AUX22D, IAA6, SAUR21, SAUR24, GH3.5, CYCD3-3, TIFY10a, TIFY10A, TIF9 HK3, otsB, TPS7, TPS9, AGPS1, AGPS3, PER47, PER61, PER24, PER66, PER4, and CCR2. Thus, we provides an interesting candidate gene list for further studies on the molecular mechanisms of adventitious rooting.


Asunto(s)
Cucumis sativus , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hemina/metabolismo , Hemina/farmacología , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Lignina/metabolismo , Perfilación de la Expresión Génica , Azúcares/metabolismo , Almidón/metabolismo
17.
Front Psychol ; 13: 878479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572300

RESUMEN

This study conducted an experiment of English script activities on 279 senior students from two universities in Guangdong Province, China. The purpose of this study was to explore the effect of English psychological script activities on improving the psychological pressure and anxiety of college students. The results show that, firstly, before the experiment, the overall psychological pressure and anxiety of college students are at a medium high level. The gender difference shows that the psychological pressure and anxiety level of girls are higher than that of boys. The professional difference shows that the psychological pressure and anxiety level of Humanities and social sciences majors are higher than that of science and engineering majors. After the experiment, the overall psychological pressure and anxiety level of college students have a significant improvement effect. From the overall level, English psychological script has the highest impact on evaluation anxiety and test anxiety. From the perspective of gender differences, English psychological scripts have the highest effect on improving the evaluation anxiety of boys, and the effect of improving test anxiety and evaluation anxiety of girls is the highest. From the perspective of professional differences, English psychological scripts have an average impact on the psychological pressure and anxiety of students majoring in Humanities and Social Sciences, while they have the highest impact on the interpersonal stress of students majoring in science and technology. The results of this research provide more reference value for college students' English education and mental health improvement.

18.
Sci Rep ; 12(1): 2825, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181714

RESUMEN

The high quality, yield and purity total RNA samples are essential for molecular experiments. However, harvesting high quality RNA in Lilium davidii var. unicolor is a great challenge due to its polysaccharides, polyphenols and other secondary metabolites. In this study, different RNA extraction methods, namely TRIzol method, the modified TRIzol method, Kit method and cetyltrimethylammonium bromide (CTAB) method were employed to obtain total RNA from different tissues in L. davidii var. unicolor. A Nano drop spectrophotometer and 1% agarose gel electrophoresis were used to detect the RNA quality and integrity. Compared with TRIzol, Kit and CTAB methods, the modified TRIzol method obtained higher RNA concentrations from different tissues and the A260/A280 ratios of RNA samples were ranged from 1.97 to 2.27. Thus, the modified TRIzol method was shown to be the most effective RNA extraction protocol in acquiring RNA with high concentrations. Furthermore, the RNA samples isolated by the modified TRIzol and Kit methods were intact, whereas different degrees of degradation happened within RNA samples isolated by the TRIzol and CTAB methods. In addition, the modified TRIzol method could also isolate high-quality RNA from other edible lily bulbs. Taken together, the modified TRIzol method is an efficient method for total RNA isolation from L. davidii var. unicolor.


Asunto(s)
Lilium/química , ARN de Planta/aislamiento & purificación , Cetrimonio/farmacología , Guanidinas/farmacología , Fenoles/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Polifenoles/farmacología , ARN de Planta/química
19.
Eur J Med Chem ; 232: 114166, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35152092

RESUMEN

Hepatocellular carcinoma is one of the most common primary hepatic malignancy. Herein, a series of semisynthesized derivatives (2-30) of the natural product (+)-sclerotiorin (1) was prepared and evaluated the cytotoxic activities against six cancer cell lines. Among them, 3 and 5 were the most effective compounds against human hepatocellular carcinoma Bel-7402 cell line with IC50 values of 1.45 and 1.15 µM, respectively. Molecular mechanism study showed that 5 disrupted the mitochondrial membrane potential and induced apoptosis in a caspase-dependent manner. In addition, 5 affected AKT and ERK signaling pathways and induced AKT and ERK proteins degradation through ubiquitin-proteasome system. Furthermore, 5 displayed significant in vivo anticancer effects in the xenograft models with decreasing the tumor mass by 52.5%. The safety evaluation was confirmed by acute toxicity subchronic toxicity tests, paraffin sections of mice organ and blood routine examination. Taken together, 5 can be developed as a potential therapeutic agent for hepatocellular carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Benzopiranos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Hepáticas/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
20.
PLoS One ; 17(1): e0262506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35015792

RESUMEN

As the main forms of carbohydrates, starch and sucrose play a vital role in the balance and coordination of various carbohydrates. Lanzhou lily is the most popular edible lily in China, mainly distributed in the central region of Gansu. To clarify the relationship between carbohydrate metabolism and bulb development of Lanzhou lily, so as to provide a basis for the promotion of the growth and development in Lanzhou lily and its important economic value, we studied lily bulbs in the squaring stage, flowering stage, half withering stage and withering stage. The plant height, fresh weight of mother and daughter bulbs continued to increase during the whole growth period and fresh weight of stem and leaf began to decrease in the half withering stage. The content of starch, sucrose and total soluble sugar in the lily mother bulb accumulated mostly in the flowering, withering and half withering stages, respectively. Starch, sucrose and total soluble sugar accumulated in the daughter bulb with the highest concentration during the withering stage. In the transcription level, sucrose synthase (SuSy1) and sucrose invertase (INV2) expressed the highest in squaring stage, and the expression was significantly higher in the mother bulb than in the daughter bulb. In flowering stage, the expression levels of soluble starch synthase (SSS1), starch-branching enzyme (SBE) and adenosine diphosphate-glucose pyrophosphorylase (AGP1) genes were higher in the mother bulb than in the daughter bulb. Altogether, our results indicate that starch and sucrose are important for the bulb growth and development of Lanzhou lily.


Asunto(s)
Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Lilium/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Transcriptoma , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Lilium/genética , Lilium/crecimiento & desarrollo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...