Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1241580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693241

RESUMEN

In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.

2.
Front Nutr ; 10: 1116982, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908923

RESUMEN

Bacillus subtilis has been extensively studied for its ability to inhibit the growth of harmful microorganisms and its high protease activity. In this study, Bacillus subtilis was used to ferment gluten and assess the effects of the fermentation process on the physicochemical, microstructure and antioxidant properties of gluten. The results of Fourier infrared spectroscopy (FT-IR) and circular chromatography (CD) showed a significant decrease in the content of α-helix structures and a significant increase in the content of ß-sheet structures in gluten after fermentation (p < 0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that glutenin was degraded into small molecular peptides with a molecular weight of less than 26 kDa after 24 h of fermentation; meanwhile, the fermentation process significantly increased the free amino acid content of the samples (p < 0.05), reaching 1923.38 µg/mL at 120 h of fermentation, which was 39.46 times higher than that at 24 h of fermentation (p < 0.05). In addition, the fermented back gluten has higher free radical scavenging activity and iron reduction capacity. Therefore, fermented gluten may be used as a functional food to alleviate oxidative stress. This study provides a reference for the high-value application of gluten.

3.
Front Nutr ; 9: 803440, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600826

RESUMEN

Insoluble dietary fiber (IDF) were isolated from wheat bran (WB) after microbial fermentation with single or mixed strain [Lactobacillus plantarum, Lactobacillus acidophilus, Bacillus subtilis or mixed lactic acid bacteria (L. plantarum and L. acidophilus with ration of 1:1)]. Structure, physicochemical, functional properties, and antioxidant activity of the wheat bran insoluble dietary fiber (W-IDF) modified by fermentation were studied. Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM) analysis suggested the successful modification of W-IDF. After fermentation with L. plantarum and mixed lactic acid bacteria, the water retention capacity (WRC), oil retention capacity (ORC), and water swelling capacity (WSC) of W-IDF were improved. The sodium cholate adsorption capacity (SCAC), and cation exchange capacity (CEC) of W-IDF modified with L. acidophilus fermentation were significantly increased. Although the cholesterol adsorption capacity (CAC) of W-IDF decreased after modification with probiotic fermentation, nitrite ion adsorption capacity (NIAC), and total phenolic content (TPC) were enhanced. Additionally, W-IDF modified by fermentation with B. subtilis or mixed lactic acid bacteria exhibited superior antioxidant capacity verified by DPPH, ABTS and total reducing power assays. Results manifested that microbial fermentation is a promising methods to modify the W-IDF to provide high-quality functional IDF for food processing and human health management.

4.
Brain Res ; 1773: 147672, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606748

RESUMEN

Wheat embryo globulin nutrient (WEGN), with wheat embryo globulin (WEG) as the main functional component, is a nutritional combination that specifically targets memory impairment. In this study, we explored the protective role of WEGN on Alzheimer's disease (AD)-triggered cognitive impairment, neuronal injury, oxidative stress, and acetylcholine system disorder. Specifically, we established an AD model via administration of d-galactose (d-gal) and Aluminum chloride (AlCl3) for 70 days, then on the 36th day, administered animals in the donepezil and WEGN (300, 600, and 900 mg/kg) groups with drugs by gavage for 35 days. Learning and memory ability of the treated rats was tested using the Morris water maze (MWM) and novel object recognition (NOR) test, while pathological changes and neuronal death in their hippocampus CA1 were detected via HE staining and Nissl staining. Moreover, we determined antioxidant enzymes by measuring levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum, cortex, and hippocampus, whereas changes in the acetylcholine system were determined by evaluating choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) activities, as well as choline acetylcholine (Ach) content. Results revealed that rats in the WEGN group exhibited significantly lower escape latency, as well as a significantly higher number of targeted crossings and longer residence times in the target quadrant, relative to those in the model group. Notably, rats in the WEGN group spent more time exploring new objects and exhibited lower damage to their hippocampus neuron, had improved learning and memory activity, as well as reversed histological alterations, relative to those in the model group. Meanwhile, biochemical examinations revealed that rats in the WEGN group had significantly lower MDA levels and AChE activities, but significantly higher GSH, SOD, and ChAT activities, as well as Ach content, relative to those in the model group. Overall, these findings indicate that WEGN exerts protective effects on cognitive impairment, neuronal damage, oxidative stress, and choline function in AD rats treated by d-gal/AlCl3.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Triticum , Cloruro de Aluminio , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Donepezilo/farmacología , Donepezilo/uso terapéutico , Galactosa , Glutatión Peroxidasa/metabolismo , Hipocampo/metabolismo , Masculino , Malondialdehído/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...