Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Heliyon ; 10(11): e32159, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912487

RESUMEN

Background: Bazi Bushen capsule (BZBS) is a Chinese herbal compound that is clinically used to treat fatigue and forgetfulness. However, it is still unclear whether and how BZBS affects heart function decline in menopausal women. This study aimed to examine the effect of BZBS on cardiac function in a high-fat diet-fed ovariectomy (HFD-fed OVX) mouse model and elucidate the underlying mechanism of this effect. Methods: The experimental animals were divided into five groups: sham group, HFD-fed OVX group, and BZBS (0.7, 1.4, 2.8 g/kg) intervention groups. Senescence ß-galactosidase staining and echocardiography were used to evaluate cardiac function. SwissTargetPrediction, KEGG and GO enrichment analyses were used to screen the underlying mechanism of BZBS. The morphological and functional changes in cardiac mitochondria and the underlying molecular mechanism were assessed by transmission electron microscopy, western blotting and biochemical assays. STRING database was used to analysis protein-protein interaction (PPI) network. Molecular docking studies were employed to predict the interactions of specific BZBS compounds with their protein targets. Results: BZBS treatment ameliorated cardiac senescence and cardiac systole injury in HFD-fed OVX mice. GO and KEGG analyses revealed that the 530 targets of the 14 main components of BZBS were enriched mainly in the oxidative stress-associated pathway, which was confirmed by the finding that BZBS treatment prevented abnormal morphological changes and oxidative stress damage to cardiac mitochondria in HFD-fed OVX mice. Furthermore, the STRING database showed that the targets of BZBS were broadly related to the Sirtuins family. And BZBS upregulated the SIRT3 and elevated the activity of SOD2 in the hearts of HFD-fed OVX mice, which was also verified in vitro. Additionally, we revealed that imperatorin and osthole from the BZBS upregulated the expression of SIRT3 by directly docking with the transcription factors HDAC1, HDAC2, and BRD4, which regulate the expression of SIRT3. Conclusion: This research shows that the antioxidative effect and cardioprotective role of BZBS on HFD-fed OVX mice involves an increase in the activity of the SIRT3/SOD2 pathway, and the imperatorin and osthole of BZBS may play central roles in this process.

2.
Br J Pharmacol ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922702

RESUMEN

BACKGROUND AND PURPOSE: Traditional Chinese medicine (TCM) played an important role in controlling the COVID-19 pandemic, but the scientific basis and its active ingredients are still weakly studied. This study aims to decipher the underlying anti-SARS-CoV-2 mechanisms of glycyrrhetinic acid (GA). EXPERIMENTAL APPROACH: GA's anti-SARS-CoV-2 effect was verified both in vitro and in vivo. Homogeneous time-resolved fluorescence assays, biolayer interferometry technology, and molecular docking were employed to examine interactions of GA with human stimulator of interferon genes (hSTING). Immunofluorescence staining, western blot, and RT-qPCR were used to investigate nuclear translocation of interferon regulatory factor 3 (IRF3) and levels of STING target genes. Pharmacokinetics of GA was studied in mice. KEY RESULTS: GA could directly bind to Ser162 and Tyr240 residues of hSTING, thus up-regulating downstream targets and activation of the STING signalling pathway. Such activation is crucial for limiting the replication of SARS-CoV-2 Omicron in Calu-3 cells and protecting against lung injury induced by SARS-CoV-2 Omicron infection in K18-ACE2 transgenic mice. Immunofluorescence staining and western blot indicated that GA increased levels of phosphorylated STING, phosphorylated TANK-binding kinase-1, and cyclic GMP-AMP synthase (cGAS). Importantly, GA increased nuclear translocation of IRF3. Pharmacokinetic analysis of GA in mice indicated it can be absorbed into circulation and detected in the lung at a stable level. CONCLUSION AND IMPLICATIONS: Activation of the cGAS-STING pathway through the GA-STING-IRF3 axis is essential for the antiviral activity of GA in mice, providing new insights into the potential translation of GA for treating SARS-CoV-2 in patients.

3.
Chin J Nat Med ; 22(5): 416-425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796215

RESUMEN

Bazi Bushen (BZBS), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy in testicular dysfunction within D-galactose and NaNO2 mouse models. This study aimed to ascertain if BZBS could also mitigate the decline in testicular function associated with natural aging. Therefore, male aged mice were employed to evaluate the preventive effects of BZBS on male reproductive aging. This was achieved by assessing sex hormone production, testicular histomorphology, and spermatogenesis. Relative to the untreated aged control group, BZBS administration elevated the levels of sex hormones and spermatocyte populations and preserved normal testicular structure in aged mice. Notably, spermatogenesis was maintained. Further analyses, including malondialdehyde (MDA) assays and real-time PCR, indicated that BZBS diminished testicular oxidative stress and the inflammatory burden. Corroborating these findings, mice treated with BZBS exhibited reductions in the populations of senescent and apoptotic cells within the seminiferous tubules, suggesting alleviated cellular damage. In contrast, we observed that rapamycin, a drug known for its longevity benefits, induced excessive testicular apoptosis and did not decrease lipid peroxidation. Collectively, our results highlight BZBS's promising clinical potential in counteracting male reproductive aging, underlining its mechanisms of action.


Asunto(s)
Envejecimiento , Medicamentos Herbarios Chinos , Estrés Oxidativo , Espermatogénesis , Testículo , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Testículo/efectos de los fármacos , Testículo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Reproducción/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Malondialdehído/metabolismo , Hormonas Esteroides Gonadales/metabolismo
4.
Chin Med ; 19(1): 61, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594761

RESUMEN

BACKGROUND: Chronic inflammation and metabolic dysfunction are key features of systemic aging, closely associated with the development and progression of age-related metabolic diseases. Bazi Bushen (BZBS), a traditional Chinese medicine used to alleviate frailty, delays biological aging by modulating DNA methylation levels. However, the precise mechanism of its anti-aging effect remains unclear. In this study, we developed the Energy Expenditure Aging Index (EEAI) to estimate biological age. By integrating the EEAI with transcriptome analysis, we aimed to explore the impact of BZBS on age-related metabolic dysregulation and inflammation in naturally aging mice. METHODS: We conducted indirect calorimetry analysis on five groups of mice with different ages and utilized the data to construct EEAI. 12 -month-old C57BL/6 J mice were treated with BZBS or ß-Nicotinamide Mononucleotide (NMN) for 8 months. Micro-CT, Oil Red O staining, indirect calorimetry, RNA sequencing, bioinformatics analysis, and qRT-PCR were performed to investigate the regulatory effects of BZBS on energy metabolism, glycolipid metabolism, and inflammaging. RESULTS: The results revealed that BZBS treatment effectively reversed the age-related decline in energy expenditure and enhanced overall metabolism, as indicated by the aging index of energy expenditure derived from energy metabolism parameters across various ages. Subsequent investigations showed that BZBS reduced age-induced visceral fat accumulation and hepatic lipid droplet aggregation. Transcriptomic analysis of perirenal fat and liver indicated that BZBS effectively enhanced lipid metabolism pathways, such as the PPAR signaling pathway, fatty acid oxidation, and cholesterol metabolism, and improved glycolysis and mitochondrial respiration. Additionally, there was a significant improvement in inhibiting the inflammation-related arachidonic acid-linoleic acid metabolism pathway and restraining the IL-17 and TNF inflammatory pathways activated via senescence associated secretory phenotype (SASP). CONCLUSIONS: BZBS has the potential to alleviate inflammation in metabolic organs of naturally aged mice and maintain metabolic homeostasis. This study presents novel clinical therapeutic approaches for the prevention and treatment of age-related metabolic diseases.

5.
Chin J Integr Med ; 30(7): 608-615, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386252

RESUMEN

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.


Asunto(s)
Medicamentos Herbarios Chinos , Fibrosis , Daño por Reperfusión Miocárdica , Miocardio , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Ratones Endogámicos C57BL , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transición Endotelial-Mesenquimatosa
6.
Artículo en Inglés | MEDLINE | ID: mdl-38343495

RESUMEN

Purpose: Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is a sudden worsening of symptoms in patients with Chronic Obstructive Pulmonary Disease (COPD), such as cough, increased sputum volume, and sputum purulence. COPD and AECOPD are characterized by damage to cilia and increased mucus secretion. Mucociliary clearance (MCC) functions as part of the primary innate system of the lung to remove harmful particles and pathogens together with airway mucus and is therefore crucial for patients with COPD. Methods: AECOPD was induced by cigarette smoke exposure (80 cigarettes/day, 5 days/week for 12 weeks) and lipopolysaccharide (LPS) instillation (200 µg, on days 1, 14, and 84). Rats administered Lianhua Qingke (LHQK) (0.367, 0.732, and 1.465 g/kg/d) or Eucalyptol, Limonene, and Pinene Enteric Soft Capsules (ELP, 0.3 g/kg/d) intragastrically. Pulmonary pathology, Muc5ac+ goblet cell and ß-tubulin IV+ ciliated cells, and mRNA levels of forkhead box J1 (Foxj1) and multiciliate differentiation and DNA synthesis associated cell cycle protein (MCIDAS) were assessed by hematoxylin and eosin staining, immunofluorescence staining, and RT-qPCR, respectively. Ciliary morphology and ultrastructure were examined through scanning electron microscopy and transmission electron microscopy. Ciliary beat frequency (CBF) was recorded using a high-speed camera. Results: Compared to the model group, LHQK treatment groups showed a reduction in inflammatory cell infiltration, significantly reduced goblet cell and increased ciliated cell proportion. LHQK significantly upregulated mRNA levels of MCIDAS and Foxj1, indicating promoted ciliated cell differentiation. LHQK protected ciliary structure and maintained ciliary function via increasing the ciliary length and density, reducing ciliary ultrastructure damage, and ameliorating random ciliary oscillations, consequently enhancing CBF. Conclusion: LHQK enhances the MCC capability of ciliated cells in rat with AECOPD by preserving the structural integrity and beating function of cilia, indicating its therapeutic potential on promoting sputum expulsion in patients with AECOPD.


Asunto(s)
Cilios , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Ratas , Animales , Cilios/patología , Cilios/ultraestructura , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/patología , Depuración Mucociliar , Células Epiteliales , ARN Mensajero
7.
Redox Rep ; 29(1): 2305036, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38390941

RESUMEN

OBJECTIVE: Angelica keiskei is a medicinal and edible plant that has been reported to possess potent antioxidant properties in several in vitro models, but its effectiveness on naturally aging organisms is still lacking. This study explores the antioxidant and health-promoting effects of Angelica keiskei in naturally aging mice. METHODS: We treated 48-week-old mice with Angelica keiskei water extract (AKWE) 30 days, and measured indicators related to aging and antioxidants. In addition, we conducted network pharmacology analysis, component-target molecular docking, real-time PCR, and MTS assays to investigate relevant factors. RESULTS: The results indicated that administration of AKWE to mice led to decrease blood glucose levels, improve muscle fiber structure, muscle strength, gait stability, and increase levels of glutathione and superoxide dismutase in serum. Additionally, it decreased pigmentation of the heart tissues. Angelica keiskei combats oxidative stress by regulating multiple redox signaling pathways, and its ingredients Coumarin and Flavonoids have the potential to bind to SIRT3 and SIRT5. CONCLUSIONS: Our findings indicated the potential of Angelica keiskei as a safe and effective dietary supplement to combat aging and revealed the broad prospects of medicinal and edible plants for addressing aging and age-related chronic diseases.


Asunto(s)
Angelica , Antioxidantes , Ratones , Animales , Angelica/química , Simulación del Acoplamiento Molecular , Suplementos Dietéticos , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química
8.
Brain Res ; 1824: 148676, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37956747

RESUMEN

The olfactory bulbectomy (OBX) animal model of depression reproduces the behavioral and neurochemical changes observed in depressed patients. We assessed the therapeutic effects of the Jieyu Chufan (JYCF) capsule on OBX rats. JYCF ameliorated the hedonic and anxiety-like behavior of OBX rats and attenuated the cortical and hippocampal damage. JYCF enhanced the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and adiponectin (ADPN) in the cortex and hippocampus of OBX rats. JYCF also reduced cortisol levels and restored the levels of excitatory neurotransmitters, such as 5-hydroxytryptamine (5-HT), acetylcholine (ACH), and glutamic acid (Glu), in the brain tissue of OBX rats. Our results suggest that JYCF preserves the synaptic structure by increasing the levels of synaptophysin (SYN) and postsynaptic density protein 95 (PSD95) and alleviates the histological alterations of brain tissue by activating AKT/PKA-CREB-BDNF pathways, and by upregulating ADPN and FGF2 expression in OBX rats. JYCF exerts multiple therapeutic effects on depression, including modulating neurotransmitters, repairing neuronal damage, and maintaining synaptic integrity. These findings support the potential of JYCF as a novel antidepressant agent with therapeutic effects on depression and related neurological disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Humanos , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Neurotransmisores/metabolismo , Bulbo Olfatorio/metabolismo , Modelos Animales de Enfermedad
9.
Cell Tissue Res ; 395(1): 63-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040999

RESUMEN

To investigate the effect and mechanism of Huogu injection (HG) on steroid-induced osteonecrosis of the femoral head (SONFH), we established a SONFH model in rabbits using horse serum and dexamethasone (DEX) and applied HG locally at the hip joint. We evaluated the therapeutic efficacy at 4 weeks using scanning electron microscopy (SEM), micro-CT, and qualitative histology including H&E, Masson's trichrome, ALP, and TUNEL staining. In vitro, we induced osteogenic differentiation of bone marrow stromal cells (BMSCs) and performed analysis on days 14 and 21 of cell differentiation. The findings, in vivo, including SEM, micro-CT, and H&E staining, showed that HG significantly maintained bone quality and trabecular number. ALP staining indicated that HG promoted the proliferation of bone cells. Moreover, the results of Masson's trichrome staining demonstrated the essential role of HG in collagen synthesis. Additionally, TUNEL staining revealed that HG reduced apoptosis. ALP and ARS staining in vitro confirmed that HG enhanced osteogenic differentiation and mineralization, consistent with the WB and qRT-PCR analysis. Furthermore, Annexin V-FITC/PI staining verified that HG inhibited osteoblast apoptosis, in agreement with the WB and qRT-PCR analyses. Furthermore, combined with the UPLC analysis, we found that naringin enhanced the osteogenic differentiation and accelerated the deposition of calcium phosphate. Salvianolic acid B protected osteoblasts derived from BMSCs against GCs-mediated apoptosis. Thus, this study not only reveals the mechanism of HG in promoting osteogenesis and anti-apoptosis of osteoblasts but also identifies the active-related components in HG, by which we provide the evidence for the application of HG in SONFH.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Conejos , Diferenciación Celular , Osteoblastos , Apoptosis , Células Cultivadas
10.
J Vis Exp ; (202)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38145382

RESUMEN

The treatment of central nervous disorders has consistently posed significant challenges to the medical field. Acupuncture, a non-pharmacological practice rooted in traditional Chinese medicine, entails the insertion of fine needles into precise points on the body and is commonly employed for the management of diverse conditions. Recently, acupuncture has emerged as a promising therapeutic intervention for a range of neurological diseases, including anxiety and respiratory disorders. However, the potential of acupuncture in treating cognitive dysfunction induced by chronic hypoxia has not yet been explored. This paper presents a comprehensive protocol for establishing a mouse model of chronic hypoxia-induced cognitive impairment, administering mild anesthesia, performing acupuncture treatment, and assessing behavioral changes and memory abilities using open field tests and water mazes. The step-by-step protocol provides detailed instructions on accurately locating and positioning acupoints and needles for cognitive improvement. By employing this protocol, researchers can conduct systematic studies to thoroughly evaluate the therapeutic potential of acupuncture for cognitive dysfunction.


Asunto(s)
Terapia por Acupuntura , Anestesia , Disfunción Cognitiva , Ratones , Animales , Terapia por Acupuntura/métodos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Medicina Tradicional China/métodos , Hipoxia/terapia , Modelos Animales de Enfermedad , Puntos de Acupuntura
11.
Chin Med ; 18(1): 145, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924136

RESUMEN

BACKGROUND: Lianhua Qingke (LHQK) is an effective traditional Chinese medicine used for treating acute tracheobronchitis. In this study, we evaluated the effectiveness of LHQK in managing airway mucus hypersecretion in the acute exacerbation of chronic obstructive pulmonary disease (AECOPD). METHODS: The AECOPD model was established by subjecting male Wistar rats to 12 weeks of cigarette smoke (CS) exposure (80 cigarettes/day, 5 days/week for 12 weeks) and intratracheal lipopolysaccharide (LPS) exposure (200 µg, on days 1, 14, and 84). The rats were divided into six groups: control (room air exposure), model (CS + LPS exposure), LHQK (LHQK-L, LHQK-M, and LHQK-H), and a positive control group (Ambroxol). H&E staining, and AB-PAS staining were used to evaluate lung tissue pathology, inflammatory responses, and goblet cell hyperplasia. RT-qPCR, immunohistochemistry, immunofluorescence and ELISA were utilized to analyze the transcription, expression and secretion of proteins related to mucus production in vivo and in the human airway epithelial cell line NCI-H292 in vitro. To predict and screen the active ingredients of LHQK, network pharmacology analysis and NF-κB reporter system analysis were employed. RESULTS: LHQK treatment could ameliorate AECOPD-triggered pulmonary structure damage, inflammatory cell infiltration, and pro-inflammatory cytokine production. AB-PAS and immunofluorescence staining with CCSP and Muc5ac antibodies showed that LHQK reduced goblet cell hyperplasia, probably by inhibiting the transdifferentiation of Club cells into goblet cells. RT-qPCR and immunohistochemistry of Muc5ac and APQ5 showed that LHQK modulated mucus homeostasis by suppressing Muc5ac transcription and hypersecretion in vivo and in vitro, and maintaining the balance between Muc5ac and AQP5 expression. Network pharmacology analysis and NF-κB luciferase reporter system analysis provided insights into the active ingredients of LHQK that may help control airway mucus hypersecretion and regulate inflammation. CONCLUSION: LHQK demonstrated therapeutic effects in AECOPD by reducing inflammation, suppressing goblet cell hyperplasia, preventing Club cell transdifferentiation, reducing Muc5ac hypersecretion, and modulating airway mucus homeostasis. These findings support the clinical use of LHQK as a potential treatment for AECOPD.

12.
Heliyon ; 9(10): e20362, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818000

RESUMEN

Background: Immunosenescence, an age-related deficit in immunity, associated with multiple disorders and making the successful aging a challenge. Although nearly 4000 articles have been published, only few review articles have summarized the research status. In order to better understand the most recent advances, hotspots and development trends in immunosenescence, it is very necessary to conduct a comprehensive bibliometric analysis. Hence, commonly used bibliometric analysis software CiteSpace and VOSviewer were employed to conduct a quantitative analysis and critical evaluation of publications in this study. Methods: Immunosenescence publications were screened from the Web of Science Core Collection (WoSCC). Microsoft Excel 2021, CiteSpace 5.8.R3, and VOSviewer 1.6.17 were used for bibliometric study. Results: A total of 3875 publications were retrieved from WoSCC. After screening by document type (article or review) (352 publications were excluded) and language of English (85 were excluded), 3438 studies were finally used for bibliometric analysis. The literature on immunosenescence had been continuously growing since 1991, and by 2020 it has skyrocketed 312 publications from 240 in 2019. USA (1111 publications, 35.01%) was the leading country of publications, followed by ITALY (379, 11.94%) and ENGLAND (366, 11.53%). Of the authors, Pawelec G from the Tubingen University of GERMANY contributed the greatest articles (93 publications). All the keywords could be divided into five clusters, and additional potent visualization bursts revealed that "gut microbiota," "health," "dysfunction," and "nivolumab" were the active hotspots presently. Conclusion: Based on the current data, we firstly concluded that there will be a dramatically rising publications on immunosenescence, and research teams from USA or GERMANY might be the best chooses for collaboration. Moreover, We particularly emphasized the development potential of mechanism and intervening strateges like "gut microbiota" and "nivolumab" in immunosenescence. We hope to provide new ideas for promoting the basic research and clinical application of immunosenescence.

13.
Heliyon ; 9(7): e17603, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449101

RESUMEN

Aims: To explore the new indications and key mechanism of Bazi Bushen capsule (BZBS) by network pharmacology and in vitro experiment. Methods: The ingredients library of BZBS was constructed by retrieving multiple TCM databases. The potential target profiles of the components were predicted by target prediction algorithms based on different principles, and validated by using known activity data. The target spectrum of BZBS with high reliability was screened by considering the source of the targets and the node degree in compound-target (C-T) network. Subsequently, new indications for BZBS were predicted by disease ontology (DO) enrichment analysis and initially validated by GO and KEGG pathway enrichment analysis. Furthermore, the target sets of BZBS acting on AD signaling pathway were identified by intersection analysis. Based on STRING database, the PPI network of target was constructed and their node degree was calculated. Two Alzheimer's disease (AD) cell models, BV-2 and SH-SY5Y, were used to preliminarily verify the anti-AD efficacy and mechanism of BZBS in vitro. Results: In total, 1499 non-repeated ingredients were obtained from 16 herbs in BZBS formula, and 1320 BZBS targets with high confidence were predicted. Disease enrichment results strongly suggested that BZBS formula has the potential to be used in the treatment of AD. GO and KEGG enrichment results provide a preliminary verification of this point. Among them, 113 functional targets of BZBS belong to AD pathway. A PPI network containing 113 functional targets and 1051 edges for the treatment of AD was constructed. In vitro experiments showed that BZBS could significantly reduce the release of TNF-α and IL-6 and the expression of COX-2 and PSEN1 in Aß25-35-induced BV-2 cells, which may be related to the regulation of ERK1/2/NF-κB signaling pathway. BZBS reduced the apoptosis rate of Aß25-35 induced SH-SY5Y cells, significantly increased mitochondrial membrane potential, reduced the expression of Caspase3 active fragment and PSEN1, and increased the expression of IDE. This may be related to the regulation of GSK-3ß/ß-catenin signaling pathway. Conclusions: BZBS formula has a potential use in the treatment of AD, which is achieved through regulation of ERK1/2, NF-κB signaling pathways, and GSK-3ß/ß-catenin signaling pathway. Furthermore, the network pharmacology technology is a feasible drug repurposing strategy to reposition new clinical use of approved TCM and explore the mechanism of action. The study lays a foundation for the subsequent in-depth study of BZBS in the treatment of AD and provides a basis for its application in the clinical treatment of AD.

14.
J Sci Food Agric ; 103(14): 7273-7283, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450639

RESUMEN

BACKGROUND: Bazi Bushen is a Chinese patented medicine with multiple health benefits and geroprotective effects, yet, no research has explored its effects on intestinal homeostasis. In this study, we aimed to investigate the effect of Bazi Bushen on intestinal inflammation and the potential mechanism of gut microbiota dysbiosis and intestinal homeostasis in senescence-accelerated mouse prone 6 (SAMP6). The hematoxylin and eosin (H&E) staining and immunohistochemistry were performed to assess the function of the intestinal mucosal barrier. The enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to determine the level of intestinal inflammation. The aging-related ß-galactosidase (SA-ß-gal) staining and Western blotting were used to measure the extent of intestinal aging. The 16S ribosomal RNA (16S rRNA) was performed to analyze the change in gut microbiota composition and distribution. RESULTS: Bazi Bushen exerted remarkable protective effects in SAMP6, showing a regulated mucosal barrier and increased barrier integrity. It also suppressed intestinal inflammation through down-regulating pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) and inhibiting TLR4/NFκB signaling pathway (MYD88, p-p65, and TLR4). Bazi Bushen improved intestinal aging by reducing the area of SA-ß-gal-positive cells and the expression of senescence markers p16, p21, and p53. In addition, Bazi Bushen effectively rebuilt the gut microbiota ecosystem by decreasing the abundance of Bacteroides and Klebsiella, whiles increasing the ratio of Lactobacillus/Bacteroides and the abundance of Akkermansia. CONCLUSION: Our study shows that Bazi Bushen could serve as a potential therapy for maintaining intestinal homeostasis. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/genética , Ecosistema , ARN Ribosómico 16S , FN-kappa B/genética , Homeostasis , Transducción de Señal , Inflamación
15.
J Vis Exp ; (194)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092820

RESUMEN

This study aims to show the estrogen-like effect of Bazi Bushen capsule (BZBS), a Chinese herbal compound, in ovariectomized mice. Female Sprague-Dawley (SD) rats were randomly divided into six groups: a sham-operated group, a model group (OVX), a progynova group, and BZBS groups (1, 2, and 4 d/kg/d). An ovariectomy was performed on all rats except those in the sham-operated group. Micro-computed tomography (micro-CT) scanning, hematoxylin and eosin (H&E) staining, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) detection were performed after 4 months of BZBS treatment. As a result, compared with the OVX group, rats treated with BZBS showed an increased number and area of trabecular bone and bone marrow cells, and a decreased number of adipose cells. The bone volume, trabecular number, and trabecular thickness of the right tibia in the medication groups increased and the trabecular space decreased. The 17ß-estradiol and serum calcium levels in the medication groups were elevated, but the levels of serum phosphorus, sclerostin, ß-CTX, and TRACP-5b were decreased. In the medication groups, the RANKL and sclerostin levels were decreased, while the osteoprotegerin (OPG) level was increased. In conclusion, this protocol systematically evaluated the therapeutic effects and potential molecular mechanisms of Chinese herbal compounds in ovariectomized rats with a variety of techniques.


Asunto(s)
Estradiol , Tibia , Ratas , Femenino , Animales , Ratones , Ratas Sprague-Dawley , Microtomografía por Rayos X , Estradiol/farmacología , Estrógenos/farmacología
16.
World J Diabetes ; 14(3): 234-254, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37035233

RESUMEN

BACKGROUND: Peripheral arterial disease (PAD) has become one of the leading causes of disa-bility and death in diabetic patients. Restoring blood supply to the hindlimbs, especially by promoting arteriogenesis, is currently the most effective strategy, in which endothelial cells play an important role. Tongxinluo (TXL) has been widely used for the treatment of cardio-cerebrovascular diseases and extended for diabetes-related vascular disease. AIM: To investigate the effect of TXL on diabetic PAD and its underlying mechanisms. METHODS: An animal model of diabetic PAD was established by ligating the femoral artery of db/db mice. Laser Doppler imaging and micro-computed tomography (micro-CT) were performed to assess the recovery of blood flow and arteriogenesis. Endothelial cell function related to arteriogenesis and cellular pyroptosis was assessed using histopathology, Western blot analysis, enzyme-linked immuno-sorbent assay and real-time polymerase chain reaction assays. In vitro, human vascular endothelial cells (HUVECs) and human vascular smooth muscle cells (VSMCs) were pretreated with TXL for 4 h, followed by incubation in high glucose and hypoxia conditions to induce cell injury. Then, indicators of HUVEC pyroptosis and function, HUVEC-VSMC interactions and the migration of VSMCs were measured. RESULTS: Laser Doppler imaging and micro-CT showed that TXL restored blood flow to the hindlimbs and enhanced arteriogenesis. TXL also inhibited endothelial cell pyroptosis via the reactive oxygen species/nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3/Caspase-1/GSDMD signaling pathway. In addition, TXL restored endothelial cell functions, including maintaining the balance of vasodilation, acting as a barrier to reduce inflammation, and enhancing endothelial-smooth muscle cell interactions through the Jagged-1/Notch-1/ephrin-B2 signaling pathway. Similar results were observed in vitro. CONCLUSION: TXL has a pro-arteriogenic effect in the treatment of diabetic PAD, and the mechanism may be related to the inhibition of endothelial cell pyroptosis, restoration of endothelial cell function and promotion of endothelial cell-smooth muscle cell interactions.

17.
Phytomedicine ; 112: 154688, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738478

RESUMEN

BACKGROUND: Sophoridine (SR) has shown the potential to be an antiarrhythmic agent. However, SR's electrophysiological properties and druggability research are relatively inadequate, which limits the development of SR as an antiarrhythmic candidate. PURPOSE: To facilitate the development process of SR as an antiarrhythmic candidate, we performed integrated studies on the electrophysiological properties of SR in vitro and ex vivo to gain more comprehensive insights into the multi-ion channel blocking effects of SR, which provided the foundation for the further drugability studies in antiarrhythmic and safety studies. Firstly, SR's electrophysiological properties and antiarrhythmic potentials were recorded and assessed at the cell and tissue levels by comprehensively integrating the patch clamp with the Electrical and Optical Mapping systems. Subsequently, the antiarrhythmic effects of SR were validated by aconitine and ouabain-induced arrhythmia in vivo. Finally, the safety of SR as an antiarrhythmic candidate compound was evaluated based on the guidelines of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). STUDY DESIGN: The antiarrhythmic effect of SR was evaluated at the in vitro, ex vivo, and in vivo levels. METHODS: Isolated primary cardiomyocytes and stable cell lines were prepared to explore the electrophysiologic properties of being a multiple ion-channel blocker in vitro by whole-cell patch clamp. Using electrical and optical mapping, the negative chronotropic effect of SR was determined in langendorff-perfused rat or guinea-pig hearts.The antiarrhythmic activity of SR was assessed by the ex vivo tachyarrhythmia models induced by left coronary artery ligation (LCAL) and isoproterenol (ISO). Canonical models of aconitine and ouabain-induced arrhythmia were used to verify the antiarrhythmic effects in vivo. Finally, the pro-arrhythmic risk of SR was detected in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hSCCMs) using a Microelectrode array (MEA). RESULTS: Single-cell patch assay validated the multiple ion-channel blockers of SR in transient outward current potassium currents (Ito), l-type calcium currents (ICa-l), and rapid activation delayed rectifier potassium currents (IKr). SR ex vivo depressed heart rates (HR) and ventricular conduction velocity (CV) and prolonged Q-T intervals in a concentration-dependent manner. Consistent with the changes in HRs, SR extended the active time of hearts and increased the action potential duration measured at 90% repolarization (APD90). SR could also significantly lengthen the onset time and curtail the duration of spontaneous ventricular tachycardia (VT) in the ex vivo arrhythmic model induced by LCAL. Meanwhile, SR could also significantly upregulate the programmed electrical stimulation (PES) frequency after the ISO challenge in forming electrical alternans and re-entrant excitation. Furthermore, SR exerted antiarrhythmic effects in the tachyarrhythmia models induced by aconitine and ouabain in vivo. Notably, the pro-arrhythmic risk of SR was shallow for a moderate inhibition of the human ether-à-go-go-related gene (hERG) channel. Moreover, SR prolonged field potential duration (FPDc) of hSCCMs in a concentration-dependent manner without early after depolarization (EAD) and arrhythmia occurrence. CONCLUSION: Our results indicated that SR manifested as a multiple ion-channel blocker in the electrophysiological properties and exerts antiarrhythmic effects ex vivo and in vivo. Meanwhile, due to the low pro-arrhythmic risk in the hERG inhibition assay and the induction of EAD, SR has great potential as a leading candidate in the treatment of ventricular tachyarrhythmia.


Asunto(s)
Antiarrítmicos , Matrinas , Ratas , Humanos , Animales , Cobayas , Antiarrítmicos/efectos adversos , Ouabaína/metabolismo , Ouabaína/farmacología , Ouabaína/uso terapéutico , Aconitina/farmacología , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/tratamiento farmacológico , Canales Iónicos/metabolismo , Canales Iónicos/farmacología , Miocitos Cardíacos , Isoproterenol , Potasio/metabolismo , Potasio/farmacología , Potasio/uso terapéutico , Potenciales de Acción/fisiología
18.
Int J Oncol ; 62(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825592

RESUMEN

Cardiac glycosides (CGs) are candidate anticancer agents that function by increasing [Ca2+]i to induce apoptotic cell death in several types of cancer cells. However, new findings have shown that the anti­cancer effects of CGs involve complex cell­signal transduction mechanisms. Hence, exploring the potential mechanisms of action of CGs may provide insight into their anti­cancer effects and thus aid in the selection of the appropriate CG. Periplocymarin (PPM), which is a cardiac glycoside, is an active ingredient extracted from Cortex periplocae. The role of PPM was evaluated in HepG2 cells and xenografted nude mice. Cell proliferation, real­time ATP rate assays, western blotting, cell apoptosis assays, short interfering RNA transfection, the patch clamp technique, electron microscopy, JC­1 staining, immunofluorescence staining and autophagic flux assays were performed to evaluate the function and regulatory mechanisms of PPM in vitro. The in vivo activity of the PPM was assessed using a mouse xenograft model. The present study demonstrated that PPM synchronously activated lethal apoptosis and protective autophagy in liver cancer, and the initiation of autophagy counteracted the inherent pro­apoptotic capacity and impaired the anti­cancer effects. Specifically, PPM exerted a pro­-apoptotic effect in HepG2 cells and activated macroautophagy by initiation of the AMPK/ULK1 and mTOR signaling pathways. Activation of macroautophagy counteracted the pro­apoptotic effects of PPM, but when it was combined with an autophagy inhibitor, the anti­cancer effects of PPM in mice bearing HepG2 xenografts were observed. Collectively, these results indicated that a self­limiting effect impaired the pro­apoptotic effects of PPM in liver cancer, but when combined with an autophagy inhibitor, it may serve as a novel therapeutic option for the management of liver cancer.


Asunto(s)
Glicósidos Cardíacos , Neoplasias Hepáticas , Animales , Ratones , Humanos , Ratones Desnudos , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Glicósidos Cardíacos/farmacología , Autofagia , Apoptosis , Línea Celular Tumoral , Proliferación Celular
19.
Drug Des Devel Ther ; 17: 313-330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776448

RESUMEN

Purpose: The aim of our study was to investigate the mechanism by which the Chinese compound Shensong Yangxin Capsule (SSYX) reduces susceptibility to arrhythmia in db/db mice. Methods: The db/db mice without drug treatment served as the model group. Other-treated db/db mice were administered SSYX for 8 weeks. Electrocardiogram (ECG), electrical mapping, pathological changes, immunofluorescence staining, real-time quantitative PCR, and Western blot analyses were then conducted. Results: SSYX decreased arrhythmia susceptibility and shortened the abnormal ECG parameters of db/db mice. Meanwhile, SSYX restored irregular conduction direction and shortened the conduction time of the isolated heart. HE and Masson staining showed that SSYX alleviated inflammatory infiltration and collagen fiber deposition. Western blot showed that SSYX decreased the protein expression of ICAM-1, VCAM-1, and MCP-1 and increased the protein expression of occludin, ZO-1, eNOS, and Cx43. SSYX also increased the content of NO, decreased ET-1, TNF-α, IL-1ß, IL-6, MCP-1, and CCR-2 mRNA expression, and increased Kv 4.2, Kv 4.3, Cav 1.2, and Nav 1.5 mRNA expression. Furthermore, SSYX decreased the fluorescence intensity of F4/80 and iNOS, increased the fluorescence intensity of CD31 and eNOS, and improved the Cx43 and α-actinin connection structure in cardiac tissues. The above therapeutic effects of SSYX were inhibited by L-NAME. Conclusion: SSYX reduced the susceptibility of db/db mice to arrhythmia by inhibiting the inflammatory response and macrophage polarization, and this effect of SSYX occurred through protection of endothelial cell function.


Asunto(s)
Conexina 43 , Medicamentos Herbarios Chinos , Ratones , Animales , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Endotelio , ARN Mensajero
20.
Biomed Pharmacother ; 160: 114384, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764132

RESUMEN

Bazi Bushen (BZBS), a traditional Chinese medicine, has been proven effective in the treatment of age-related disease in mouse models. However, whether its therapeutic effects are due to antiaging mechanism has not yet been explored. In the present study, we investigated the antiaging effects of BZBS in naturally aging mice by using behavioral tests, liver DNA methylome sequencing, methylation age estimation, and frailty index assessment. The methylome analysis revealed a decrease of mCpG levels in the aged mouse liver. BZBS treatment tended to restore age-associated methylation decline and prune the methylation pattern toward that of young mice. More importantly, BZBS significantly rejuvenated methylation age of the aged mice, which was computed by an upgraded DNA methylation clock. These results were consistent with enhanced memory and muscular endurance, as well as decreased frailty score and liver pathological changes. KEGG analysis together with aging-related database screening identified methylation-targeted pathways upon BZBS treatment, including oxidative stress, DNA repair, MAPK signaling, and inflammation. Upregulation of key effectors and their downstream effects on elevating Sod2 expression and diminishing DNA damage were further investigated. Finally, in vitro experiments with senescent HUVECs proved a direct effect of BZBS extracts on the regulation of methylation enzymes during cellular aging. In summary, our work has revealed for the first time the antiaging effects of BZBS by slowing the methylation aging. These results suggest that BZBS might have great potential to extend healthspan and also explored the mechanism of BZBS action in the treatment of age-related diseases.


Asunto(s)
Epigénesis Genética , Fragilidad , Animales , Ratones , Fragilidad/genética , Envejecimiento/genética , Metilación de ADN , Senescencia Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...