Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(36): e2303758120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639582

RESUMEN

In Arabidopsis thaliana, brassinosteroid (BR) signaling and stomatal development are connected through the SHAGGY/GSK3-like kinase BR INSENSITIVE2 (BIN2). BIN2 is a key negative regulator of BR signaling but it plays a dual role in stomatal development. BIN2 promotes or restricts stomatal asymmetric cell division (ACD) depending on its subcellular localization, which is regulated by the stomatal lineage-specific scaffold protein POLAR. BRs inactivate BIN2, but how they govern stomatal development remains unclear. Mapping the single-cell transcriptome of stomatal lineages after triggering BR signaling with either exogenous BRs or the specific BIN2 inhibitor, bikinin, revealed that the two modes of BR signaling activation generate spatiotemporally distinct transcriptional responses. We established that BIN2 is always sensitive to the inhibitor but, when in a complex with POLAR and its closest homolog POLAR-LIKE1, it becomes protected from BR-mediated inactivation. Subsequently, BR signaling in ACD precursors is attenuated, while it remains active in epidermal cells devoid of scaffolds and undergoing differentiation. Our study demonstrates how scaffold proteins contribute to cellular signal specificity of hormonal responses in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , División Celular Asimétrica , Glucógeno Sintasa Quinasa 3 , Transducción de Señal , Diferenciación Celular , Arabidopsis/genética , Proteínas Quinasas/genética , Proteínas de Arabidopsis/genética
2.
Nat Plants ; 9(2): 355-371, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635451

RESUMEN

Adaptor protein (AP) complexes are evolutionarily conserved vesicle transport regulators that recruit coat proteins, membrane cargoes and coated vesicle accessory proteins. As in plants endocytic and post-Golgi trafficking intersect at the trans-Golgi network, unique mechanisms for sorting cargoes of overlapping vesicular routes are anticipated. The plant AP complexes are part of the sorting machinery, but despite some functional information, their cargoes, accessory proteins and regulation remain largely unknown. Here, by means of various proteomics approaches, we generated the overall interactome of the five AP and the TPLATE complexes in Arabidopsis thaliana. The interactome converged on a number of hub proteins, including the thus far unknown adaptin binding-like protein, designated P34. P34 interacted with the clathrin-associated AP complexes, controlled their stability and, subsequently, influenced clathrin-mediated endocytosis and various post-Golgi trafficking routes. Altogether, the AP interactome network offers substantial resources for further discoveries of unknown endomembrane trafficking regulators in plant cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Red trans-Golgi/metabolismo , Aparato de Golgi/metabolismo , Clatrina/metabolismo
3.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35876813

RESUMEN

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Monofosfato/metabolismo , Aminopiridinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas , Glucógeno Sintasa Quinasa 3/genética , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Succinatos
4.
Curr Biol ; 32(3): 518-531.e6, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085499

RESUMEN

The epidermal pavement cell shape in Arabidopsis is driven by chemical and mechanical cues that direct partitioning mechanisms required for the establishment of the lobe- and indentation-defining polar sites. Brassinosteroid (BR) hormones regulate pavement cell morphogenesis, but the underlying mechanism remains unclear. Here, we identified two PLECKSTRIN HOMOLOGY GTPase-ACTIVATING proteins (PHGAPs) as substrates of the GSK3-like kinase BR-INSENSITIVE2 (BIN2). The phgap1phgap2 mutant displayed severe epidermal cell shape phenotypes, and the PHGAPs were markedly enriched in the anticlinal face of the pavement cell indenting regions. BIN2 phosphorylation of PHGAPs was required for their stability and polarization. BIN2 inhibition activated ROP2-GTPase signaling specifically in the lobes because of PHGAP degradation, while the PHGAPs restrained ROP2 activity in the indentations. Hence, we connect BR and ROP2-GTPase signaling pathways via the regulation of PHGAPs and put forward the importance of spatiotemporal control of BR signaling for pavement cell interdigitation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Forma de la Célula , GTP Fosfohidrolasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Fosforilación
5.
Nature ; 563(7732): 574-578, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429609

RESUMEN

Stomatal cell lineage is an archetypal example of asymmetric cell division (ACD), which is necessary for plant survival1-4. In Arabidopsis thaliana, the GLYCOGEN SYNTHASE KINASE3 (GSK3)/SHAGGY-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2) phosphorylates both the mitogen-activated protein kinase (MAPK) signalling module5,6 and its downstream target, the transcription factor SPEECHLESS (SPCH)7, to promote and restrict ACDs, respectively, in the same stomatal lineage cell. However, the mechanisms that balance these mutually exclusive activities remain unclear. Here we identify the plant-specific protein POLAR as a stomatal lineage scaffold for a subset of GSK3-like kinases that confines them to the cytosol and subsequently transiently polarizes them within the cell, together with BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), before ACD. As a result, MAPK signalling is attenuated, enabling SPCH to drive ACD in the nucleus. Moreover, POLAR turnover requires phosphorylation on specific residues, mediated by GSK3. Our study reveals a mechanism by which the scaffolding protein POLAR ensures GSK3 substrate specificity, and could serve as a paradigm for understanding regulation of GSK3 in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , División Celular Asimétrica , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Complejos Multiproteicos/metabolismo , Transducción de Señal , Arabidopsis/enzimología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Citosol/enzimología , Citosol/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Complejos Multiproteicos/química , Fenotipo , Fosforilación , Estomas de Plantas/citología , Unión Proteica , Proteínas Quinasas/metabolismo , Especificidad por Sustrato
6.
Plant Physiol ; 174(2): 823-842, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28507175

RESUMEN

The asymmetric cell divisions necessary for stomatal lineage initiation and progression in Arabidopsis (Arabidopsis thaliana) require the function of the basic helix-loop-helix (bHLH) transcription factor SPEECHLESS (SPCH). Mutants lacking SPCH do not produce stomata or lineages. Here, we isolated a new spch-5 allele carrying a point mutation in the bHLH domain that displayed normal growth, but had an extremely low number of sometimes clustered stomata in the leaves, whereas the hypocotyls did not have any stomata. In vivo tracking of leaf epidermal cell divisions, combined with marker lines and genetic analysis, showed that the spch-5 leaf phenotype is dosage dependent and results from the decreased ability to initiate and amplify lineages, defects in asymmetric cell fate allocation, and misorientation of asymmetric division planes. Notably, application of brassinosteroids (BRs) partly rescued the stomatal leaf phenotype of spch-5 Transcriptomic analysis combining spch-5 with BR treatments revealed that the expression of a set of SPCH target genes was restored by BRs. Our results also show that BR-dependent stomata formation and expression of some, but not all, SPCH target genes require the integrity of the bHLH domain of SPCH.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Brasinoesteroides/metabolismo , Mutación , Estomas de Plantas/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Brasinoesteroides/farmacología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/citología , Hojas de la Planta/citología , Hojas de la Planta/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Dominios Proteicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Mol Microbiol Biotechnol ; 26(4): 277-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27245477

RESUMEN

BACKGROUND/AIMS: The Escherichia coli MazF is an endoribonuclease that cleaves mRNA at ACA sequences, thereby triggering inhibition of protein synthesis. The aim of this study is to evaluate the efficiency of the mazEF toxin-antitoxin system in plants to develop biotechnological tools for targeted cell ablation. METHODS: A double transformation strategy, combining expression of the mazE antitoxin gene under the control of the CaMV 35S promoter, reported to drive expression in all plant cells except within the tapetum, together with the expression of the mazF gene under the control of the TA29 tapetum-specific promoter in transgenic tobacco, was applied. RESULTS: No transgenic TA29-mazF line could be regenerated, suggesting that the TA29 promoter is not strictly tapetum specific and that MazF is toxic for plant cells. The regenerated 35S-mazE/TA29-mazF double-transformed lines gave a unique phenotype where the tapetal cell layer was necrosed resulting in the absence of pollen. CONCLUSION: These results show that the E. colimazEF system can be used to induce death of specific plant cell types and can provide a new tool to plant cell ablation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/toxicidad , Endorribonucleasas/toxicidad , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidad , Nicotiana/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Muerte Celular , Proteínas de Unión al ADN/genética , Endorribonucleasas/genética , Proteínas de Escherichia coli/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Nicotiana/genética , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...