Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Nutr ; 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37972895

BACKGROUND: Plant-derived proteins are considered to have fewer anabolic properties when compared with animal-derived proteins. The anabolic properties of isolated proteins do not necessarily reflect the anabolic response to the ingestion of whole foods. The presence or absence of the various components that constitute the whole-food matrix can strongly impact protein digestion and amino acid absorption and, as such, modulate postprandial muscle protein synthesis rates. So far, no study has compared the anabolic response following ingestion of an omnivorous compared with a vegan meal. OBJECTIVES: This study aimed to compare postprandial muscle protein synthesis rates following ingestion of a whole-food omnivorous meal providing 100 g lean ground beef with an isonitrogenous, isocaloric whole-food vegan meal in healthy, older adults. METHODS: In a randomized, counter-balanced, cross-over design, 16 older (65-85 y) adults (8 males, 8 females) underwent 2 test days. On one day, participants consumed a whole-food omnivorous meal containing beef as the primary source of protein (0.45 g protein/kg body mass; MEAT). On the other day, participants consumed an isonitrogenous and isocaloric whole-food vegan meal (PLANT). Primed continuous L-[ring-13C6]-phenylalanine infusions were applied with blood and muscle biopsies being collected frequently for 6 h to assess postprandial plasma amino acid profiles and muscle protein synthesis rates. Data are presented as means ± standard deviations and were analyzed by 2 way-repeated measures analysis of variance and paired-samples t tests. RESULTS: MEAT increased plasma essential amino acid concentrations more than PLANT over the 6-h postprandial period (incremental area under curve 87 ± 37 compared with 38 ± 54 mmol·6 h/L, respectively; P-interaction < 0.01). Ingestion of MEAT resulted in ∼47% higher postprandial muscle protein synthesis rates when compared with the ingestion of PLANT (0.052 ± 0.023 and 0.035 ± 0.021 %/h, respectively; paired-samples t test: P = 0.037). CONCLUSIONS: Ingestion of a whole-food omnivorous meal containing beef results in greater postprandial muscle protein synthesis rates when compared with the ingestion of an isonitrogenous whole-food vegan meal in healthy, older adults. This study was registered at clinicaltrials.gov as NCT05151887.

2.
J Nutr ; 153(1): 66-75, 2023 01.
Article En | MEDLINE | ID: mdl-36913480

BACKGROUND: Ingestion of protein concentrates or isolates increases muscle protein synthesis rates in young and older adults. There is far less information available on the anabolic response following the ingestion of dairy wholefoods, which are commonly consumed in a normal diet. OBJECTIVES: This study investigates whether ingestion of 30 g protein provided as quark increases muscle protein synthesis rates at rest and whether muscle protein synthesis rates are further increased after resistance exercise in young and older adult males. METHODS: In this parallel-group intervention trial, 14 young (18-35 y) and 15 older (65-85 y) adult males ingested 30 g protein provided as quark after a single-legged bout of resistance exercise on leg press and leg extension machines. Primed, continuous intravenous L-[ring-13C6]-phenylalanine infusions were combined with the collection of blood and muscle tissue samples to assess postabsorptive and 4-h postprandial muscle protein synthesis rates at rest and during recovery from exercise. Data represent means ± SDs; η2 was used to measure the effect size. RESULTS: Plasma total amino acid and leucine concentrations increased after quark ingestion in both groups (both time: P < 0.001; η2 > 0.8), with no differences between groups (time × group: P = 0.127 and P = 0.172, respectively; η2<0.1). Muscle protein synthesis rates increased following quark ingestion at rest in both young (from 0.030 ± 0.011 to 0.051 ± 0.011 %·h-1) and older adult males (from 0.036 ± 0.011 to 0.062 ± 0.013 %·h-1), with a further increase in the exercised leg (to 0.071 ± 0.023 %·h-1 and to 0.078 ± 0.019 %·h-1, respectively; condition: P < 0.001; η2 = 0.716), with no differences between groups (condition × group: P = 0.747; η2 = 0.011). CONCLUSIONS: Quark ingestion increases muscle protein synthesis rates at rest with a further increase following exercise in both young and older adult males. The postprandial muscle protein synthetic response following quark ingestion does not differ between healthy young and older adult males when an ample amount of protein is ingested. This trial was registered at the Dutch Trial register, which is accessible via trialsearch.who.int www.trialregister.nl as NL8403.


Muscle Proteins , Resistance Training , Male , Humans , Muscle Proteins/metabolism , Double-Blind Method , Leucine/metabolism , Muscle, Skeletal/metabolism , Eating , Dietary Proteins/metabolism , Postprandial Period
...