Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 10(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717808

RESUMEN

Improvements in the accuracy and availability of long-read sequencing mean that complete bacterial genomes are now routinely reconstructed using hybrid (i.e. short- and long-reads) assembly approaches. Complete genomes allow a deeper understanding of bacterial evolution and genomic variation beyond single nucleotide variants. They are also crucial for identifying plasmids, which often carry medically significant antimicrobial resistance genes. However, small plasmids are often missed or misassembled by long-read assembly algorithms. Here, we present Hybracter which allows for the fast, automatic and scalable recovery of near-perfect complete bacterial genomes using a long-read first assembly approach. Hybracter can be run either as a hybrid assembler or as a long-read only assembler. We compared Hybracter to existing automated hybrid and long-read only assembly tools using a diverse panel of samples of varying levels of long-read accuracy with manually curated ground truth reference genomes. We demonstrate that Hybracter as a hybrid assembler is more accurate and faster than the existing gold standard automated hybrid assembler Unicycler. We also show that Hybracter with long-reads only is the most accurate long-read only assembler and is comparable to hybrid methods in accurately recovering small plasmids.


Asunto(s)
Algoritmos , Genoma Bacteriano , Programas Informáticos , Plásmidos/genética , Análisis de Secuencia de ADN/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Bacterias/genética , Bacterias/clasificación
2.
iScience ; 27(5): 109691, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38736549

RESUMEN

Salicylate is commonly used to induce tinnitus in animals, but its underlying mechanism of action is still debated. We therefore tested its effects on the firing properties of neurons in the mouse inferior colliculus (IC). Salicylate induced a large decrease in the spontaneous activity and an increase of ∼20 dB SPL in the minimum threshold of single units. In response to sinusoidally modulated noise (SAM noise) single units showed both an increase in phase locking and improved rate coding. Mice also became better at detecting amplitude modulations, and a simple threshold model based on the IC population response could reproduce this improvement. The responses to dynamic random chords (DRCs) suggested that the improved AM encoding was due to a linearization of the cochlear output, resulting in larger contrasts during SAM noise. These effects of salicylate are not consistent with the presence of tinnitus, but should be taken into account when studying hyperacusis.

3.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542309

RESUMEN

Chronic rhinosinusitis (CRS) is characterized by sinonasal mucosal inflammation. Staphylococcus aureus (S. aureus) is associated with severe CRS phenotypes. Different animal models have been proposed to study the association of CRS and S. aureus. However, current animal models are expensive due to the use of large animals, have high barriers to ethics approval, or require invasive surgical intervention, necessitating a need for a model that can overcome these limitations. This study aimed at establishing a reliable and efficient rat lymphoplasmacytic inflammatory model for rhinosinusitis. Sprague Dawley rats received a daily intranasal application of 20 µL of saline, S. aureus CI-182 exoprotein (250 µg/mL), or exoprotein CI-182 in combination with S. aureus clinical isolate (CI-908 or CI-913) 108 colony-forming unit (CFU)/mL. The rats' sinuses were harvested at 1 and 2 weeks post-intervention. The CFU and histopathologic examination of inflammation were evaluated. S. aureus clinical isolates CI-908 or CI-913 in combination with the exoprotein (CI-182) had higher CFUs and caused persistently higher inflammation at both the 1 and 2-week post-intervention compared to the exoprotein and saline group. The observed inflammatory cell type was lymphoplasmacytic. This study provided evidence that the combination of a S. aureus exoprotein with S. aureus induces inflammation that persists for a minimum of two weeks post-intervention. This model is the first known animal model to create the lymphoplasmacytic inflammation subtype seen in CRS patients. This offers a cost-effective, accessible, non-invasive, and easy-to-replicate model to study the causes and treatment of such inflammation.


Asunto(s)
Rinitis , Rinosinusitis , Sinusitis , Infecciones Estafilocócicas , Humanos , Ratas , Animales , Staphylococcus aureus , Rinitis/complicaciones , Ratas Sprague-Dawley , Sinusitis/complicaciones , Inflamación/complicaciones , Infecciones Estafilocócicas/tratamiento farmacológico , Solución Salina , Enfermedad Crónica
4.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542379

RESUMEN

Chronic rhinosinusitis (CRS) is an inflammatory condition of the sinonasal mucosa. Despite being a common health issue, the exact cause of CRS is yet to be understood. However, research suggests that Staphylococcus aureus, particularly in its biofilm form, is associated with the disease. This study aimed to investigate the impact of long-term exposure to secreted factors of Staphylococcus aureus biofilm (SABSFs), harvested from clinical isolates of non-CRS carrier and CRS patients, on the nasal mucosa in a rat model. Animals were randomised (n = 5/group) to receive daily intranasal instillations of 40 µL (200 µg/µL) SABSFs for 28 days or vehicle control. The sinonasal samples were analysed through histopathology and transcriptome profiling. The results showed that all three intervention groups displayed significant lymphocytic infiltration (p ≤ 0.05). However, only the SABSFs collected from the CRSwNP patient caused significant mucosal damage, mast cell infiltration, and goblet cell hyperplasia compared to the control. The transcriptomics results indicated that SABSFs significantly enriched multiple inflammatory pathways and showed distinct transcriptional expression differences between the control group and the SABSFs collected from CRS patients (p ≤ 0.05). Additionally, the SABSF challenges induced the expression of IgA and IgG but not IgE. This in vivo study indicates that long-term exposure to SABSFs leads to an inflammatory response in the nasal mucosa with increased severity for S. aureus isolated from a CRSwNP patient. Moreover, exposure to SABSFs does not induce local production of IgE.


Asunto(s)
Rinitis , Rinosinusitis , Sinusitis , Humanos , Ratas , Animales , Células Caliciformes/patología , Staphylococcus aureus , Rinitis/patología , Hiperplasia/patología , Mastocitos/patología , Sinusitis/patología , Biopelículas , Enfermedad Crónica
5.
Int Microbiol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517580

RESUMEN

Phage therapy has recently been revitalized in the West with many successful applications against multi-drug-resistant bacterial infections. However, the lack of geographically diverse bacteriophage (phage) genomes has constrained our understanding of phage diversity and its genetics underpinning host specificity, lytic capability, and phage-bacteria co-evolution. This study aims to locally isolate virulent phages against uropathogenic Escherichia coli (E. coli) and study its phenotypic and genomic features. Three obligately virulent Escherichia phages (øEc_Makalu_001, øEc_Makalu_002, and øEc_Makalu_003) that could infect uropathogenic E. coli were isolated and characterized. All three phages belonged to Krischvirus genus. One-step growth curve showed that the latent period of the phages ranged from 15 to 20 min, the outbreak period ~ 50 min, and the burst size ranged between 74 and 127 PFU/bacterium. Moreover, the phages could tolerate a pH range of 6 to 9 and a temperature range of 25-37 °C for up to 180 min without significant loss of phage viability. All phages showed a broad host spectrum and could lyse up to 30% of the 35 tested E. coli isolates. Genomes of all phages were approximately ~ 163 kb with a gene density of 1.73 gene/kbp and an average gene length of ~ 951 bp. The coding density in all phages was approximately 95%. Putative lysin, holin, endolysin, and spanin genes were found in the genomes of all three phages. All phages were strictly virulent with functional lysis modules and lacked any known virulence or toxin genes and antimicrobial resistance genes. Pre-clinical experimental and genomic analysis suggest these phages may be suitable candidates for therapeutic applications.

6.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168369

RESUMEN

Improvements in the accuracy and availability of long-read sequencing mean that complete bacterial genomes are now routinely reconstructed using hybrid (i.e. short- and long-reads) assembly approaches. Complete genomes allow a deeper understanding of bacterial evolution and genomic variation beyond single nucleotide variants (SNVs). They are also crucial for identifying plasmids, which often carry medically significant antimicrobial resistance (AMR) genes. However, small plasmids are often missed or misassembled by long-read assembly algorithms. Here, we present Hybracter which allows for the fast, automatic, and scalable recovery of near-perfect complete bacterial genomes using a long-read first assembly approach. Hybracter can be run either as a hybrid assembler or as a long-read only assembler. We compared Hybracter to existing automated hybrid and long-read only assembly tools using a diverse panel of samples of varying levels of long-read accuracy with manually curated ground truth reference genomes. We demonstrate that Hybracter as a hybrid assembler is more accurate and faster than the existing gold standard automated hybrid assembler Unicycler. We also show that Hybracter with long-reads only is the most accurate long-read only assembler and is comparable to hybrid methods in accurately recovering small plasmids.

7.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38010322

RESUMEN

Chronic rhinosinusitis (CRS) is a common chronic sinonasal mucosal inflammation associated with Staphylococcus aureus biofilm and relapsing infections. This study aimed to determine rates of S. aureus persistence and pathoadaptation in CRS patients by investigating the genomic relatedness and antibiotic resistance/tolerance in longitudinally collected S. aureus clinical isolates. A total of 68 S. aureus paired isolates (34 pairs) were sourced from 34 CRS patients at least 6 months apart. Isolates were grown into 48 h biofilms and tested for tolerance to antibiotics. A hybrid sequencing strategy was used to obtain high-quality reference-grade assemblies of all isolates. Single nucleotide variants (SNV) divergence in the core genome and sequence type clustering were used to analyse the relatedness of the isolate pairs. Single nucleotide and structural genome variations, plasmid similarity, and plasmid copy numbers between pairs were examined. Our analysis revealed that 41 % (14/34 pairs) of S. aureus isolates were persistent, while 59 % (20/34 pairs) were non-persistent. Persistent isolates showed episode-specific mutational changes over time with a bias towards events in genes involved in adhesion to the host and mobile genetic elements such as plasmids, prophages, and insertion sequences. Furthermore, a significant increase in the copy number of conserved plasmids of persistent strains was observed. This was accompanied by a significant increase in biofilm tolerance against all tested antibiotics, which was linked to a significant increase in biofilm biomass over time, indicating a potential biofilm pathoadaptive process in persistent isolates. In conclusion, our study provides important insights into the mutational changes during S. aureus persistence in CRS patients highlighting potential pathoadaptive mechanisms in S. aureus persistent isolates culminating in increased biofilm biomass.


Asunto(s)
Sinusitis , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Sinusitis/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Nucleótidos
8.
Microbes Infect ; 25(8): 105213, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37652259

RESUMEN

Chronic rhinosinusitis (CRS) is a persistent inflammation of the sinus mucosa. Recalcitrant CRS patients are unresponsive to medical and surgical interventions and often present with nasal polyps, tissue eosinophilia, and Staphylococcus aureus dominant mucosal biofilms. However, S. aureus sinonasal mucosal colonisation occurs in the absence of inflammation, questioning the role of S. aureus in CRS pathogenesis. Here, we aimed to investigate the relationship between S. aureus biofilm metabolic activity and virulence genes, innate immune cells, and disease severity in CRS. Biospecimens, including sinonasal tissue and nasal swabs, and clinical datasets, including disease severity scores, were obtained from CRS patients and non-CRS controls. S. aureus isolates were grown into biofilms in vitro, characterised, and sequenced. The patients' innate immune response was evaluated using flow cytometry. S. aureus was isolated in 6/19 (31.58%) controls and 23/53 (43.40%) CRS patients of 72 recruited patients. We found increased S. aureus biofilm metabolic activity in relation to increased eosinophil cell frequencies and disease severity in recalcitrant CRS cases. Mast cell frequencies were higher in tissue samples of patients carrying S. aureus harbouring lukF.PV, sea, and fnbB genes. Patients with S. aureus harbouring lukF.PV and sdrE genes had more severe disease. This offers insights into the pathophysiology of CRS and could lead to the development of more targeted therapies.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Rinitis , Rinosinusitis , Sinusitis , Humanos , Staphylococcus aureus/genética , Eosinófilos/patología , Rinitis/patología , Sinusitis/patología , Mucosa Nasal , Biopelículas , Gravedad del Paciente , Inflamación/patología , Enfermedad Crónica
9.
Immunology ; 170(1): 120-133, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37191458

RESUMEN

Chronic rhinosinusitis (CRS) represents chronic inflammation of the sinus mucosa characterised by dysfunction of the sinuses' natural defence mechanisms and induction of different inflammatory pathways ranging from a Th1 to a Th2 predominant polarisation. Recalcitrant CRS is associated with Staphylococcus aureus dominant mucosal biofilms; however, S. aureus colonisation of the sinonasal mucosa has also been observed in healthy individuals challenging the significance of S. aureus in CRS pathogenesis. We aimed to investigate the relationship between CRS key inflammatory markers, S. aureus biofilm properties/virulence genes and the severity of the disease. Tissue samples were collected during endoscopic sinus surgery from the ethmoid sinuses of CRS patients with (CRSwNP) and without (CRSsNP) nasal polyps and controls (n = 59). CD3+ T-cell subset frequencies and key inflammatory markers of CD4+ helper T cells were determined using FACS analysis. Sinonasal S. aureus clinical isolates were isolated (n = 26), sequenced and grown into biofilm in vitro, followed by determining their properties, including metabolic activity, biomass, colony-forming units and exoprotein production. Disease severity was assessed using Lund-Mackay radiologic scores, Lund-Kennedy endoscopic scores and SNOT22 quality of life scores. Our results showed that S. aureus biofilm properties and CRS severity scores correlated positively with total CD4+ T-cell frequencies but looking into CD4+ T-cell subsets showed an inverse correlation with Th1 and Th17 cell frequencies. CD4+ T-cell frequencies were higher in patients harbouring lukF.PV-positive S. aureus while its regulatory and Th17 cell subset frequencies were lower in patients carrying sea- and sarT/U-positive S. aureus. Recalcitrant CRS is characterised by increased S. aureus biofilm properties in relation to increased total CD4+ helper T-cell frequencies and reduced frequencies of its Th1, Th17 and regulatory T-cell subsets. These findings offer insights into the pathophysiology of CRS and could lead to the development of more targeted therapies.


Asunto(s)
Linfocitos T CD4-Positivos , Células Th17 , Humanos , Staphylococcus aureus , Calidad de Vida , Biopelículas , Enfermedad Crónica
10.
Front Immunol ; 14: 1054588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993962

RESUMEN

Background: Dysregulated inflammation is important in the pathogenesis of many diseases including cancer, allergy, and autoimmunity. Macrophage activation and polarisation are commonly involved in the initiation, maintenance and resolution of inflammation. Perhexiline (PHX), an antianginal drug, has been suggested to modulate macrophage function, but the molecular effects of PHX on macrophages are unknown. In this study we investigated the effect of PHX treatment on macrophage activation and polarization and reveal the underlying proteomic changes induced. Methods: We used an established protocol to differentiate human THP-1 monocytes into M1 or M2 macrophages involving three distinct, sequential stages (priming, rest, and differentiation). We examined the effect of PHX treatment at each stage on the polarization into either M1 or M2 macrophages using flow cytometry, quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Quantitative changes in the proteome were investigated using data independent acquisition mass spectrometry (DIA MS). Results: PHX treatment promoted M1 macrophage polarization, including increased STAT1 and CCL2 expression and IL-1ß secretion. This effect occurred when PHX was added at the differentiation stage of the M1 cultures. Proteomic profiling of PHX treated M1 cultures identified changes in metabolic (fatty acid metabolism, cholesterol homeostasis and oxidative phosphorylation) and immune signalling (Receptor Tyrosine Kinase, Rho GTPase and interferon) pathways. Conclusion: This is the first study to report on the action of PHX on THP-1 macrophage polarization and the associated changes in the proteome of these cells.


Asunto(s)
Perhexilina , Proteómica , Humanos , Perhexilina/metabolismo , Perhexilina/farmacología , Proteoma/metabolismo , Macrófagos , Diferenciación Celular , Inflamación/metabolismo
11.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453861

RESUMEN

SUMMARY: In recent years, there has been an increasing interest in bacteriophages, which has led to growing numbers of bacteriophage genomic sequences becoming available. Consequently, there is a need for a rapid and consistent genomic annotation tool dedicated for bacteriophages. Existing tools either are not designed specifically for bacteriophages or are web- and email-based and require significant manual curation, which makes their integration into bioinformatic pipelines challenging. Pharokka was created to provide a tool that annotates bacteriophage genomes easily, rapidly and consistently with standards compliant outputs. Moreover, Pharokka requires only two lines of code to install and use and takes under 5 min to run for an average 50-kb bacteriophage genome. AVAILABILITY AND IMPLEMENTATION: Pharokka is implemented in Python and is available as a bioconda package using 'conda install -c bioconda pharokka'. The source code is available on GitHub (https://github.com/gbouras13/pharokka). Pharokka has been tested on Linux-64 and MacOSX machines and on Windows using a Linux Virtual Machine.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Genómica , Genoma , Biología Computacional , Programas Informáticos
12.
Arch Microbiol ; 204(6): 334, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35585249

RESUMEN

Application of bacteriophages (phages) to treat complex multidrug-resistant bacterial infection is gaining traction because of its efficacy and universal availability. However, as phages are specific to their host, a diverse collection of locally isolated phage from various geographical locations is required to formulate a wide host range phage cocktail. Here, we report morphological and genomic features of three newly isolated phages from river water of the urban region in Kathmandu, Nepal, targeting three different bacteria (Escherichia coli, Klebsiella pneumoniae and Salmonella enterica.) from the Enterobacteriaceae family. Morphological identification and genome analysis indicated that two phages (Escherichia phage vB_EcoM_TU01 and Klebsiella phage vB_KpnP_TU02) were strictly lytic and free from integrases, virulence factors, toxins and known antimicrobial resistance genes, whereas Salmonella phage vB_SalS_TU03 was possibly a temperate phage. The genomic features of these phages indicate that natural phages are capable of lysing pathogenic bacteria and may have potential in bacterial biocontrol.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Escherichia coli/genética , Genoma Viral , Genómica , Especificidad del Huésped , Klebsiella/genética , Salmonella/genética
14.
Microb Genom ; 7(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907894

RESUMEN

Prophages affect bacterial fitness on multiple levels. These include bacterial infectivity, toxin secretion, virulence regulation, surface modification, immune stimulation and evasion and microbiome competition. Lysogenic conversion arms bacteria with novel accessory functions thereby increasing bacterial fitness, host adaptation and persistence, and antibiotic resistance. These properties allow the bacteria to occupy a niche long term and can contribute to chronic infections and inflammation such as chronic rhinosinusitis (CRS). In this study, we aimed to identify and characterize prophages present in Staphylococcus aureus from patients suffering from CRS in relation to CRS disease phenotype and severity. Prophage regions were identified using PHASTER. Various in silico tools like ResFinder and VF Analyzer were used to detect virulence genes and antibiotic resistance genes respectively. Progressive MAUVE and maximum likelihood were used for multiple sequence alignment and phylogenetics of prophages respectively. Disease severity of CRS patients was measured using computed tomography Lund-Mackay scores. Fifty-eight S. aureus clinical isolates (CIs) were obtained from 28 CRS patients without nasal polyp (CRSsNP) and 30 CRS patients with nasal polyp (CRSwNP). All CIs carried at least one prophage (average=3.6) and prophages contributed up to 7.7 % of the bacterial genome. Phage integrase genes were found in 55/58 (~95 %) S. aureus strains and 97/211 (~46 %) prophages. Prophages belonging to Sa3int integrase group (phiNM3, JS01, phiN315) (39/97, 40%) and Sa2int (phi2958PVL) (14/97, 14%) were the most prevalent prophages and harboured multiple virulence genes such as sak, scn, chp, lukE/D, sea. Intact prophages were more frequently identified in CRSwNP than in CRSsNP (P=0.0021). Intact prophages belonging to the Sa3int group were more frequent in CRSwNP than in CRSsNP (P=0.0008) and intact phiNM3 were exclusively found in CRSwNP patients (P=0.007). Our results expand the knowledge of prophages in S. aureus isolated from CRS patients and their possible role in disease development. These findings provide a platform for future investigations into potential tripartite associations between bacteria-prophage-human immune system, S. aureus evolution and CRS disease pathophysiology.


Asunto(s)
Pólipos Nasales/microbiología , Profagos/genética , Rinitis/microbiología , Sinusitis/microbiología , Staphylococcus aureus/virología , Composición de Base , Farmacorresistencia Bacteriana , Tamaño del Genoma , Genoma Bacteriano , Humanos , Evasión Inmune , Pólipos Nasales/diagnóstico por imagen , Filogenia , Rinitis/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Sinusitis/diagnóstico por imagen , Staphylococcus aureus/clasificación , Staphylococcus aureus/genética , Tomografía Computarizada por Rayos X , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA