Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38917999

RESUMEN

Strontium-90 is a radionuclide found in high concentrations in nuclear reactor waste and nuclear fallout from reactor accidents and atomic bomb explosions. In the 1950s, little was known regarding the health consequences of strontium-90 internalization. To assess the health effects of strontium-90 ingestion in infancy through adolescence, the Atomic Energy Commission and Department of Energy funded large-scale beagle studies at the University of California-Davis. Conducted from 1956 to 1989, the strontium-90 ingestion study followed roughly 460 beagles throughout their lifespans after they were exposed to strontium-90 in utero (through feeding of the mother) and fed strontium-90 feed at varying doses from weaning to age 540 days. The extensive medical data and formalin-fixed paraffin-embedded tissues were transferred from UC Davis to the National Radiobiology Archive in 1992 and subsequently to the Northwestern University Radiobiology Archive in 2010. Here, we summarize the design of the strontium-90 ingestion study and give an overview of its most frequent recorded findings. As shown before, radiation-associated neoplasias (osteosarcoma, myeloproliferative syndrome and select squamous cell carcinomas) were almost exclusively observed in the highest dose groups, while the incidence of neoplasias most frequent in controls decreased as dose increased. The occurrence of congestive heart failure in each dose group, not previously assessed by UC Davis researchers, showed a non-significant increase between the controls and lower dose groups that may have been significant had sample sizes been larger. Detailed secondary analyses of these data and samples may uncover health endpoints that were not evaluated by the team that conducted the study.

2.
Ann Epidemiol ; 94: 33-41, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631438

RESUMEN

PURPOSE: In occupational epidemiology, the healthy worker survivor effect can manifest as a time-dependent confounder because healthier workers can accrue greater amounts of exposure over longer periods of employment. For example, in occupational studies of radiation exposure that focus on cumulative annualized radiation dose, workers can accrue greater amounts of cumulative radiation exposure over longer periods of employment, while workers with longer periods of employment can transition into jobs with a reduced potential for annualized radiation exposure. The extent to which confounding arising from the healthy worker survivor effect impacts radiation risk estimates is unknown. METHODS: We assessed the impact of the healthy worker survivor effect on estimates of radiation risk among nuclear workers in a Million Person Study cohort. In simulation studies, we contrasted the ability of marginal structural Cox models with inverse probability weighting and Cox proportional hazards models to account for time-dependent confounding arising from the healthy worker survivor effect. RESULTS: Marginal structural Cox models and Cox proportional hazards models with flexible functional forms for duration of employment provided reliable results. CONCLUSIONS: It is crucial to flexibly adjust for duration of employment to account for confounding arising from the healthy worker survivor effect in occupational epidemiology.


Asunto(s)
Empleo , Exposición Profesional , Modelos de Riesgos Proporcionales , Humanos , Exposición Profesional/efectos adversos , Empleo/estadística & datos numéricos , Efecto del Trabajador Sano , Factores de Tiempo , Masculino , Femenino , Factores de Confusión Epidemiológicos , Adulto , Persona de Mediana Edad , Estudios de Cohortes
3.
Z Med Phys ; 34(1): 100-110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37537100

RESUMEN

BACKGROUND: Radiation is one of the most important stressors related to missions in space beyond Earth's orbit. Epidemiologic studies of exposed workers have reported elevated rates of Parkinson's disease. The importance of cognitive dysfunction related to low-dose rate radiation in humans is not defined. A meta-analysis was conducted of six cohorts in the Million Person Study (MPS) of low-dose health effects to learn whether there is consistent evidence that Parkinson's disease is associated with radiation dose to brain. MATERIALS AND METHODS: The MPS evaluates all causes of death among U.S. radiation workers and veterans, including Parkinson's disease. Systematic and consistent methods are applied to study all categories of workers including medical radiation workers, industrial radiographers, nuclear power plant workers, atomic veterans, and Manhattan Projects workers at the Los Alamos National Laboratory and at Rocky Flats. Consistent methods for all cohorts are used to estimate organ-specific doses and to obtain vital status and cause of death. RESULTS: The meta-analysis include 6 cohorts within the MPS, consisting of 517,608 workers and 17,219,001 person-years of observation. The mean dose to brain ranged from 6.9 to 47.6 mGy and the maximum dose from 0.76 to 2.7 Gy. Five of the 6 cohorts revealed positive associations with Parkinson's disease. The overall summary estimate from the meta-analysis was statistically significant based on 1573 deaths due to Parkinson's disease. The summary excess relative risk at 100 mGy was 0.17 (95% CI: 0.05; 0.29). CONCLUSIONS: Parkinson's disease was positively associated with radiation in the MPS cohorts indicating the need for careful evaluation as to causality in other studies, delineation of possible mechanisms, and assessing possible implications for space travel as well as radiation protection guidance for terrestrial workers.


Asunto(s)
Exposición Profesional , Enfermedad de Parkinson , Protección Radiológica , Veteranos , Humanos , Luna , Exposición Profesional/efectos adversos , Protección Radiológica/métodos
4.
Int J Radiat Biol ; 100(2): 161-175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37819879

RESUMEN

INTRODUCTION: Mallinckrodt Chemical Works was a uranium processing facility during the Manhattan Project from 1942 to 1966. Thousands of workers were exposed to low-dose-rates of ionizing radiation from external and internal sources. This third follow-up of 2514 White male employees updates cancer and noncancer mortality potentially associated with radiation and silica dust. MATERIALS AND METHODS: Individual, annualized organ doses were estimated from film badge records (n monitored = 2514), occupational chest x-rays (n = 2514), uranium urinalysis (n = 1868), radium intake through radon breath measurements (n = 487), and radon ambient measurements (n = 1356). Silica dust exposure from pitchblende processing was estimated (n = 1317). Vital status and cause of death determination through 2019 relied upon the National Death Index and Social Security Administration Epidemiological Vital Status Service. The analysis included standardized mortality ratios (SMRs), Cox proportional hazards, and Poisson regression models. RESULTS: Vital status was confirmed for 99.4% of workers (84.0% deceased). For a dose weighting factor of 1 for intakes of uranium, radium, and radon decay products, the mean and median lung doses were 65.6 and 29.9 mGy, respectively. SMRs indicated a difference in health outcomes between salaried and hourly workers, and more brain cancer deaths than expected [SMR: 1.79; 95% confidence interval (CI): 1.14, 2.70]. No association was seen between radiation and lung cancer [hazard ratio (HR) at 100 mGy: 0.93; 95%CI: 0.78, 1.11]. The relationship between radiation and kidney cancer observed in the previous follow-up was maintained (HR at 100 mGy: 2.07; 95%CI: 1.12, 3.79). Cardiovascular disease (CVD) also increased significantly with heart dose (HR at 100 mGy: 1.11; 95%CI: 1.02, 1.21). Exposures to dust ≥23.6 mg/m3-year were associated with nonmalignant kidney disease (NMKD) (HR: 3.02; 95%CI: 1.12, 8.16) and kidney cancer combined with NMKD (HR: 2.46; 95%CI: 1.04, 5.81), though without evidence of a dose-response per 100 mg/m3-year. CONCLUSIONS: This third follow-up of Mallinckrodt uranium processors reinforced the results of the previous studies. There was an excess of brain cancers compared with the US population, although no radiation dose-response was detected. The association between radiation and kidney cancer remained, though potentially due to few cases at higher doses. The association between levels of silica dust ≥23.6 mg/m3-year and NMKD also remained. No association was observed between radiation and lung cancer. A positive dose-response was observed between radiation and CVD; however, this association may be confounded by smoking, which was unmeasured. Future work will pool these data with other uranium processing worker cohorts within the Million Person Study.


Asunto(s)
Enfermedades Cardiovasculares , Neoplasias Renales , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Radio (Elemento) , Radón , Uranio , Humanos , Masculino , Uranio/efectos adversos , Estudios de Seguimiento , Estudios de Cohortes , Exposición Profesional/efectos adversos , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/epidemiología , Neoplasias Renales/complicaciones , Polvo , Dióxido de Silicio , Enfermedades Profesionales/etiología
5.
Int J Radiat Biol ; 99(2): 208-228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35758985

RESUMEN

BACKGROUND: There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS: A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS: Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Uranio , Masculino , Humanos , Femenino , Adulto , Uranio/efectos adversos , Tennessee , Exposición Profesional/efectos adversos , Enfermedades Profesionales/etiología , Estudios de Cohortes , Neoplasias Pulmonares/etiología , Polvo
6.
Int J Radiat Biol ; 99(2): 183-207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34731066

RESUMEN

BACKGROUND: Estimates of radiation risks following prolonged exposures at low doses and low-dose rates are uncertain. Medical radiation workers are a major component of the Million Person Study (MPS) of low-dose health effects. Annual personal dose equivalents, HP(10), for individual workers are available to facilitate dose-response analyses for lung cancer, leukemia, ischemic heart disease (IHD) and other causes of death. MATERIALS AND METHODS: The Landauer, Inc. dosimetry database identified 109,019 medical and associated radiation workers first monitored 1965-1994. Vital status and cause of death were determined through 2016. Mean absorbed doses to red bone marrow (RBM), lung, heart, and other organs were estimated by adjusting the recorded HP(10) for each worker by scaling factors, accounting for exposure geometry, the energy of the incident photon radiation, sex of the worker and whether an apron was worn. There were 4 exposure scenarios: general radiology characterized by low-energy x-ray exposure with no lead apron use, interventional radiologists/cardiologists who wore aprons, nuclear medicine personnel and radiation oncologists exposed to high-energy photon radiation, and other workers. Standardized mortality ratio (SMR) analyses were performed. Cox proportional hazards models were used to estimate organ-specific radiation risks. RESULTS: Overall, 11,433 deaths occurred (SMR 0.60; 95%CI 0.59,0.61), 126 from leukemia other than chronic lymphocytic leukemia (CLL), 850 from lung cancer, and 1654 from IHD. The mean duration of monitoring was 23.7 y. The excess relative rate (ERR) per 100 mGy was estimated as 0.10 (95% CI -0.34, 0.54) for leukemia other than CLL, 0.15 (0.02, 0.27) for lung cancer, and -0.10 (-0.27, 0.06) for IHD. The ERR for lung cancer was 0.16 (0.01, 0.32) among the 55,218 male workers and 0.09 (-0.19, 0.36) among the 53,801 female workers; a difference that was not statistically significant (p-value = 0.23). CONCLUSIONS: Medical radiation workers were at increased risk for lung cancer that was higher among men than women, although this difference was not statistically significant. In contrast, the study of Japanese atomic bomb survivors exposed briefly to radiation in 1945 found females to be nearly 3 times the radiation risk of lung cancer compared with males on a relative scale. For medical workers, there were no statistically significant radiation associations with leukemia excluding CLL, IHD or other specific causes of death. Combining these data with other cohorts within the MPS, such as nuclear power plant workers and nuclear submariners, will enable more precise estimates of radiation risks at relatively low cumulative doses.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Exposición Profesional , Protección Radiológica , Masculino , Humanos , Femenino , Estados Unidos/epidemiología , Radiometría , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología
8.
Radiat Res ; 198(4): 396-429, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35943867

RESUMEN

Ionizing radiation is an established carcinogen, but its effects on non-malignant respiratory disease (NMRD) are less clear. Cohorts exposed to multiple risk factors including radiation and toxic dusts conflate these relationships, and there is a need for clarity in previous findings. This systematic review was conducted to survey the body of existing evidence for radiation effects on NMRD in global nuclear worker cohorts. A PubMed search was conducted for studies with terms relating to radiation or uranium and noncancer respiratory outcomes. Papers were limited to the most recent report within a single cohort published between January 2000 and December 2020. Publication quality was assessed based upon UNSCEAR 2017 criteria. In total, 31 papers were reviewed. Studies included 29 retrospective cohorts, one prospective cohort, and one longitudinal cohort primarily comprising White men from the U.S., Canada and Western Europe. Ten studies contained subpopulations of uranium miners or millers. Papers reported standardized mortality ratio (SMR) analyses, regression analyses, or both. Neither SMR nor regression analyses consistently showed a relationship between radiation exposure and NMRD. A meta-analysis of excess relative risks (ERRs) for NMRD did not present evidence for a dose-response (overall ERR/Sv: 0.07; 95% CI: -0.07, 0.21), and results for more specific outcomes were inconsistent. Significantly elevated SMRs for NMRD overall were observed in two studies among the subpopulation of uranium miners and millers (combined n = 4229; SMR 1.42-1.43), indicating this association may be limited to mining and milling populations and may not extend to other nuclear workers. A quality review showed limited capacity of 17 out of 31 studies conducted to provide evidence for a causal relationship between radiation and NMRD; the higher-quality studies showed no consistent relationship. All elevated NMRD SMRs were among mining and milling cohorts, indicating different exposure profiles between mining and non-mining cohorts; future pooled cohorts should adjust for mining exposures or address mining cohorts separately.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Profesionales , Exposición Profesional , Trastornos Respiratorios , Uranio , Carcinógenos , Empleo , Humanos , Neoplasias Pulmonares/etiología , Masculino , Enfermedades Profesionales/etiología , Exposición Profesional/efectos adversos , Estudios Prospectivos , Estudios Retrospectivos , Factores de Riesgo , Uranio/efectos adversos
9.
Int J Radiat Biol ; 98(4): 722-749, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34047625

RESUMEN

BACKGROUND: During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS: The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS: Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.


Asunto(s)
Neoplasias Esofágicas , Leucemia , Neoplasias Pulmonares , Neoplasias Inducidas por Radiación , Enfermedades Profesionales , Exposición Profesional , Plutonio , Femenino , Humanos , Exposición Profesional/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...