Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1145068, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057066

RESUMEN

Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs (p < 0.05, 0.01, and 0.001). PBM-TH diet further improved these barrier functions in the intestine of fish (p < 0.05 and 0.001). Similarly, FPHs supplementation suppressed PBM-induced intestinal inflammation by controlling the expression of inflammatory cytokines (tnf-α and il-10; p < 0.05 and 0.001) and a mucin-relevant production gene (i-mucin c; p < 0.001). The 16S rRNA data showed that a PBM-based diet resulted in dysbiosis of intestinal bacteria, supported by a lower abundance of microbial diversity (p < 0.001) aligned with a prevalence of Photobacterium. PBM-FPHs restored intestine homeostasis by enhancing microbial diversity compared to those fed a PBM diet (p < 0.001). PBM-TH improved the diversity (p < 0.001) further by elevating the Firmicutes phylum and the Ruminococcus, Faecalibacterium, and Bacteroides genera. Muscle atrophy, evaluated by fiber density, hyperplasia and hypertrophy and associated genes (igf-1, myf5, and myog), occurred in barramundi fed PBM diet but was repaired after supplementation of FPHs with the PBM (p < 0.05, 0.01, and 0.001). Similarly, creatine kinase, calcium, phosphorous, and haptoglobin were impacted by PBM-based diet (p < 0.05) but were restored in barramundi fed FPHs supplemented diets (p < 0.05 and 0.01). Hence, using circular economy principles, functional FPHs could be recovered from the fish waste applied in aquafeed formulations and could prevent PBM-induced intestinal dysbiosis and muscular atrophy. GRAPHICAL ABSTRACT.

2.
Foods ; 12(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673454

RESUMEN

The physicochemical quality and shelf-life of fillets from barramundi, which were fed for 56 days on a mixture of poultry by-product meal (PBM), full-fat Hermetia illucens (FHI), and defatted HI (DHI), were investigated and compared to a fishmeal (FM) control diet. The proximate and total amino acids compositions of the fillets were unaffected by the test diets, while the mixture of PBM and HI larvae improved the sensory quality. An eight-day shelf-life study showed that PBM-HI-based diets improved the texture profile based upon the chewiness, cohesiveness, gumminess, and hardness, regardless of the storage time. The improved texture was aligned with comparatively less degradation of the microstructure of the muscle tissue in the same diets. An improvement in the quality index (QI) value, an increase in pH, and a decrease in lipid oxidation were also found in the fillets of barramundi fed test diets compared with the control diet during the storage time. The test diets positively influenced flesh lightness and redness, while the color profiles were negatively influenced by the storage time. Overall, the maintenance of compositional attributes; the enhancement of fillet sensory attributes, texture, and brightness; and the improved raw fillet shelf-life support the inclusion of PBM-HI-based diets in aquafeed.

3.
Biology (Basel) ; 10(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200162

RESUMEN

A feeding trial was conducted to test the effects of partial replacement of fishmeal (FM) protein and fish oil (FO) with partially defatted black soldier fly, Hermetia illucens insect protein, and oil, respectively, on growth performance, immune response, gut and skin barrier status, and flesh quality in juvenile barramundi. Four isonitrogenous and isocaloric diets used in the study were a control diet based on FM, 30% FM replaced with H. illucens protein (HiP), 30% FO replaced with H. illucens oil (HiO), and both 30% FM and 30% FO replaced with H. illucens protein and oil (HiPO). Diets were fed twice a day to satiety in triplicated groups of barramundi with an initial body weight of 1.74 ± 0.15 g per fish. At the end of the trial, growth and feed utilization indices were found insignificant (p > 0.05) between the test diets and control. A significant increase in bactericidal activity was observed in fish fed the HiP diet while serum lysozyme activity was unchanged. Stress-related heat shock proteins (HSP70 and HSP90) did not differ significantly among the test diets while immune-relevant genes (IL-1ß and IL-10) were significantly upregulated in HiP and HiOP groups. The number of mucin cells were increased in the gut and skin of HiP and HiOP fed fish when compared to the control diet. The total fatty acid compositions (∑SFA, ∑MUFA, ∑PUFA, ∑n-3, and ∑n-6) in the muscles of barramundi were not significantly influenced with H. illucens protein and oil diets when compared to the control.

4.
Sci Total Environ ; 796: 149045, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34328887

RESUMEN

Promoting a circular economy via the transformation of food waste into alternative and high-value protein sources for aquaculture diets is a novel approach to developing alternative raw materials to fishmeal (FM). This approach can reduce the ecological impact on the aquatic environment and simultaneously can provide an option for sustainable food waste management. In this context, we report a 56-day trial of feeding barramundi, Lates calcarifer on four iso­nitrogenous and iso-lipidic diets where the control (0PBM-0HI) was a FM-based diet and the other test diets replaced FM protein with mixtures of a poultry by-product meal (PBM) and a full-fat Hermetia illucens (HI) larvae meal reared on fish waste: the test diets were 85% PBM + 15% HI (85PBM-15HI), 80% PBM + 20% HI (80PBM-20HI) and 75% PBM + 25% HI (75PBM-25HI). Fish fed PBM-HI-based diets showed an equal growth rate and amino acid profile when compared to the control group. Among all serum metabolites, alanine aminotransferase and glutamate dehydrogenase decreased in fish fed PBM-HI-based diets, whilst total protein levels improved in the same diets. Serum lysozyme and bactericidal activity were unchanged which supported the observation of similar infection rates against V. harveyi. Except for the kidney and intestine, catalase activity in the serum and liver increased in fish-fed PBM-HI-based diets. In assessing the gastrointestinal mucosal morphology, the goblet cells producing neutral mucins were higher in PBM-HI-fed fish than the control. PBM-HI diets also enhanced bacterial richness and diversity and increased abundance for Lactobacillus, Clostridium, and Ruminococcus. In summary, combining full-fat HI with PBM allowed complete replacement of FM with no negative effects on growth whilst improving gut health. Such diets would be beneficial for the aquaculture industry, both ecologically and economically, as well as providing value-adding to animal waste as alternative protein sources for aquafeed production.


Asunto(s)
Dípteros , Eliminación de Residuos , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Proteínas de Peces , Aves de Corral
5.
Sci Rep ; 11(1): 4997, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654188

RESUMEN

The effects of feeding different levels of poultry by-product meal (PBM) replacing fishmeal (FM) protein, supplemented with tuna hydrolysate (TH) and Hermetia illucens (HI) larvae, on the growth, fillet quality, histological traits, immune status, oxidative biomarker levels and gut microbiota of juvenile barramundi, Lates calcarifer were investigated for six weeks. Barramundi were fed four isonitrogenous and isolipidic diets in which a FM based diet was used as the Control diet (Diet1) and compared with other non-FM diets containing 80%, 85% and 90% PBM along with the concurrent supplementation of 5% and/or 10% TH and HI larvae meal. These treatment diets were designated as 80PBM10TH+10HI (Diet2), 85PBM5TH+10HI (Diet3) and 90PBM5TH+5HI (Diet4). The growth and condition factor of fish fed 80PBM10TH+10HI and 85PBM5TH+10HI were significantly higher than the Control. Total saturated, monounsaturated and polyunsaturated fatty acid retention in the fish muscle increased in fish fed PBM-based diets, supplemented with TH and HI larvae meal, with no adverse effect on post-harvest characteristics such as texture and colour of fish fillets. Improvement in serum total bilirubin and total protein content was found in all fish fed TH and HI larvae supplemented PBM. Similarly, immune response showed a significant increase in fish fed non-FM test diets than the Control. In the distal intestine, supplementation of any quantities of TH and HI larvae to PBM led to an increase in the microvilli density and neutral mucins while the number of goblet cells in the skin were unchanged. Liver, kidney, and spleen histology demonstrated a normal structure with no obvious changes in response to all test diets. Bacterial diversity increased in fish fed Diets 2 and 3 with a high abundance of Proteobacteria in Diets 1 and 4 and Firmicutes in Diets 2 and 3. The fish on test diets showed a lower abundance of genus Vibrio. Fish fed TH and HI larvae supplemented PBM diets showed lower infection rate to V. harveyi than the Control. Collectively, concurrent supplementation of TH and HI larvae could improve the quality of PBM diets with positive effects on growth, fillet quality, intestinal health, immunity, and disease resistance.


Asunto(s)
Alimentación Animal , Bacterias , Peces/crecimiento & desarrollo , Microbioma Gastrointestinal , Productos Avícolas , Animales , Bacterias/clasificación , Bacterias/crecimiento & desarrollo
6.
Front Nutr ; 8: 788064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096935

RESUMEN

The proximate composition, sensory attributes, and shelf life of filets from barramundi, Lates calcarifer, were fed a fishmeal (FM) based diet (0PBM-0HI) and three test diets replacing FM protein entirely with 85% poultry by-products meal (PBM) and 15% Hermetia illucens (HI) larvae meal protein (85PBM-15HI), 80% PBM and 20% HI (80PBM-20HI) and 75% PBM and 25% HI (75PBM-25HI) were investigated. After a 56-day feeding trial, the crude protein, moisture, and ash percentage were unchanged while the crude lipid increased in barramundi filet when fed with PBM-HI-based diets. The increase in C12:0 (lauric acid) and C14:0 (myristic acid) resulted in an increase in the total saturated fatty acid while the monounsaturated fatty acid elevated due to an increase in C16:1n7 and C18:1cis + trans in the filet of the barramundi fed with a PBM-HI based diet. While the decrease in the total polyunsaturated fatty acid (PUFA) content in PBM-HI based fed barramundi filet was mainly due to a decrease in essential fatty acids including C20:5n3 [eicosapentaenoic acid (EPA)] and C22:6n3 [docosahexaenoic acid (DHA)] when compared with the 0PBM-0HI fed barramundi filet. The sensory quality was improved by PBM-HI-based diets, manifested by the highest scores given by the panelists. Texture profiles were not affected by diet but cohesiveness, gumminess, and chewiness decreased with increasing storage time. On days 1 and 8, skin brightness decreased in the skin of the barramundi fed with 85PBM-15HI and 80PBM-20HI compared with the skin of the 0PBM-0HI fed barramundi. Skin redness improved in fish-fed PBM-HI-based diets. The flesh brightness and yellowness increased significantly in barramundi when fed with PBM-HI-based diets. On days 1 and 4, the flesh brightness of the barramundi fed with PBM-HI-based diets demonstrated an increase compared with 0PBM-0HI. PBM-HI diets suppress lipid oxidation while lipid oxidation increased over the storage time. In summary, the improvement in sensory quality and color coupled with the suppression of rancidity in barramundi filets underpinned the potentiality of using the mixture of PBM and HI transformed from food waste in the barramundi diet to improve the filet quality and thus support sustainability and circular economy in aquaculture.

7.
Sci Rep ; 10(1): 17091, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33051467

RESUMEN

The search for suitable fish meal replacements in aqua-diets is a salient agenda in the constant effort of making aquaculture practices more sustainable. In this study, we tested four customised diets composed by systematic inclusion of pre-selected fish meal substitutes, lupin kernel meal, BSF meal, TH and PBM on growth, metabolism, cytokine profile, gut morphology and microbiota of juvenile Lates calcarifer. Five isoproteic and isoenergetic diets were prepared viz. FM100 as a control (without fish meal substitute), while FM75, FM50, FM25 and FM0 indicates replacement of fish meal (FM) at 25%, 50%, 75%, and 100%, respectively by a mixture of four different pre-selected non-fish meal (NFM) ingredients. Fish fed FM100, FM75, FM50, FM25 exhibited consistent growth and haematological response, while the fish fed no fishmeal (FM0) showed significant decline in final body weight (FBW) and specific growth rate (SGR). The poor growth performance was correlated with a decrease in villous width, microvilli height and goblet cells density. A significant shift in abundance profile of Psychrobacter in the gut microbial profile of fish fed FM50 was noticed compared to fish fed FM100. The results of qRT-PCR showed up-regulated expression of innate immune responsive genes in the FM50 group. The adverse impacts on growth performance and gut health of fish fed FM0 suggest that the complete substitution of fishmeal is not advisable and the inclusion range of these alternatives should be decided for a species only after examining their effect on maximal physiological performance.


Asunto(s)
Alimentación Animal , Perciformes/crecimiento & desarrollo , Animales , Acuicultura/métodos , Citocinas/sangre , Proteínas en la Dieta/administración & dosificación , Microbioma Gastrointestinal , Perciformes/inmunología , Perciformes/metabolismo , Perciformes/microbiología
8.
Fish Shellfish Immunol ; 104: 567-578, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32562869

RESUMEN

In an effort to reduce the use of fishmeal (FM), the effect of using protein from poultry by product meal (PBM) along with the supplementation of three different fish protein hydrolysate (FPH) including yellowtail kingfish, carp and tuna hydrolysate (designated as KH, CH and TH, respectively) were evaluated in juvenile barramundi for growth performance, fillet quality, mucosal immunity, serum biochemistry, immune response and infection against Vibrio harveyi. Fish were fed a FM based control diet + three isonitrogenous and isolipidic diets containing 90% of PBM protein supplemented with different types of hydrolysates: 90% PBM +10% KH (90PBM + KH), 90% PBM + 10% CH (90PBM + CH) and 90% PBM + 10% TH (90PBM + TH). Growth performance and indices were unaffected by the hydrolysate supplemented diets when compared to the control. FPH supplemented PBM diets resulted in improved muscle quality by improving poly unsaturated fatty acids (PUFA), ∑n-3, ∑n-6 and ∑n-9, and health related lipid indexes were not affected. The internal architecture of spleen and kidney were not altered by test diets whilst FPH supplemented PBM modulated acidic mucins in intestine and skin of fish. Improved infection rate in response to two weeks post infection with V. harveyi in the FPH supplemented diets was further associated with an increased serum immune response and a concomitant regulation of proinflammatory and inflammatory cytokines in the head kidney. Serum biochemistry including alanine transaminase (ALT), glutamate dehydrogenase (GLDH) and total bilirubin (TB) showed a decreasing trend both in pre-challenge and post-challenge barramundi fed FPH supplemented diets whereas cholesterol level decreased significantly in post-challenge groups fed 90PBM + KH and 90PBM + TH than pre-challenge barramundi. This study signifies that supplementation of 10% with different three FPH, hydrolysed by an alcalase® enzyme in PBM-based diets for barramundi could be good strategies to overcome the negative consequences triggered by animal by-product ingredients.


Asunto(s)
Inmunidad Innata , Músculo Esquelético/fisiología , Perciformes/inmunología , Hidrolisados de Proteína/metabolismo , Suero/química , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Inmunidad Innata/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Hidrolisados de Proteína/administración & dosificación , Distribución Aleatoria , Suero/efectos de los fármacos
9.
Front Nutr ; 7: 613158, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33521040

RESUMEN

A 6-week feeding trial was performed to examine the effects of supplementing Hermetia illucens (HI) larvae meal when fishmeal (FM) was replaced with poultry by-product meal (PBM) in juvenile barramundi, Lates calcarifer diet. The effect was evaluated in terms of barramundi growth, filet quality, internal tissue structure, serum biochemistry, skin neutral mucins, immune response, and resistance to Vibrio harveyi. Three isonitrogenous (48% crude protein) and isolipidic (18% crude lipid) diets: an FM-based diet (control) and two diets containing 60 and 75% of PBM supplemented with 10% HI larvae (60PBM + HI and 75PBM + HI) were formulated. A total of 225 barramundi, with an average weight of 15.87 ± 0.14 g, were randomly distributed into nine tanks, each holding 25 fish. There were no significant effects of test diets on growth, but feeding HI-supplemented PBM diets significantly increased the survival rate. A significantly reduced intraperitoneal fat index in HI-supplemented-PBM-fed fish was correlated to a decreased size of peritoneal adipocytes. The observation of no histopathological alteration of the liver in the HI-supplemented-PBM-fed fish was further supported by significant alterations in serum biochemistry, in particular, a decreasing tendency of alanine transaminase, glutamate dehydrogenase, and total bilirubin. A 14-day challenge with V. harveyi indicated that HI-supplemented PBM diets reduced the infection rate in barramundi. After 24 h of infection, increased serum (lysozyme) and skin barrier functions, down-regulation of interleukin-1beta, and upregulation of interleukin-10 were found in HI-supplemented-PBM-fed fish.

10.
Fish Shellfish Immunol ; 97: 465-473, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31866445

RESUMEN

The present study investigated the supplemental effects of tuna hydrolysate (TH) in poultry by-product meal (PBM) and dietary fishmeal (FM) diets on antioxidant enzymatic activities, gut microbial communities and expression of cytokine genes in the distal intestine of juvenile barramundi, Lates calcarifer. Fish were fed with fermented (FPBM + TH) as well as non-fermented PBM (PBM + TH) and FM (FMBD + TH) diets with 10% TH supplementation for 10 weeks. A basal diet prepared without TH supplementation served as control. The results showed that the activity of glutathione peroxidase was significantly higher in FPBM + TH than the control, while the malondialdehyde and catalase activities were unchanged. FPBM + TH diet significantly (P < 0.05) upregulated the pro-inflammatory cytokines including IL-1ß and TNF-α while considerable downregulation (P < 0.05) was observed in the mRNA expression levels of anti-inflammatory cytokine, IL-10 in the distal intestine of fish. The 16SrRNA analysis using V3-V4 region evidenced the ability of FPBM + TH to modulate the distal intestinal gut microbiome, augmenting the richness of Firmicutes and Fusobacteriaat at phylum level and Bacillus, Lactococcus and Cetobacterium at genus level. All these results have shown that fermented PBM with TH supplementation could improve the antioxidant capacity and inflammatory responses of juvenile barramundi while influencing the microbial communities at both phylum and genera levels.


Asunto(s)
Alimentación Animal/análisis , Antioxidantes/metabolismo , Citocinas/inmunología , Peces/inmunología , Microbioma Gastrointestinal , Hidrolisados de Proteína/administración & dosificación , Animales , Fermentación , Explotaciones Pesqueras , Peces/genética , Glutatión Peroxidasa/metabolismo , Productos Avícolas , ARN Mensajero , Atún
11.
Sci Rep ; 9(1): 16703, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31723163

RESUMEN

This study investigated the effects of replacement of fishmeal (FM) with poultry by-product (PBM) protein, supplemented with black soldier fly, Hermetia illucens (HI) larvae on growth, histomormhology, immunity and resistance to Vibrio harveyi in juvenile barramundi. Two hundred and twenty five barramundi averaging 3.51 ± 0.03 g were randomly allocated into three groups and fed isonitrogenous and isocalorific diets containing different levels of PBM supplemented with HI as follows: Control (FM based diet), 45PBM + HI (45% PBM supplemented with 10% HI), and 90PBM + HI (90% PBM supplemented with 10% HI) for 6 weeks. Results showed that dietary inclusion of 45PBM + HI significantly improved the growth performance than control whereas growth inhibition occurred in the 90PBM + HI. The 45PBM + HI groups demonstrated significant increases in histometric measurements (villus and enterocyte width, and microvilli height) and acidic mucins. The impaired growth in 90PBM + HI groups was further associated with multifocal necrosis in the liver, an upregulation of the stress related genes (HSP70 and HSP90) and increase in the levels of liver enzymes. When 45PBM + HI was fed, survival against V. harveyi increased significantly and also an increase in serum immunity and immune-related genes in the head kidney was observed after infection.


Asunto(s)
Alimentación Animal/análisis , Dípteros/fisiología , Resistencia a la Enfermedad , Larva/fisiología , Perciformes/anatomía & histología , Perciformes/inmunología , Vibriosis/inmunología , Animales , Proteínas en la Dieta/administración & dosificación , Perciformes/crecimiento & desarrollo , Productos Avícolas , Vibrio/fisiología , Vibriosis/virología
12.
PLoS One ; 14(4): e0215025, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30964913

RESUMEN

Poultry by-product meal (PBM) has been utilised as a substitute of fishmeal (FM) in many aquaculture species. However, little information is known regarding the use of bioprocessed PBM (BPBM) in aquaculture production. This study was undertaken to investigate whether replacing FM with BPBM improved growth performance, gut morphology and fatty acid synthesis of juvenile barramundi, Lates calcarifer. The PBM was bioprocessed by baker yeast, Saccharomyces cerevisae and Lactobacillus casei. The BPBM was used to replace FM at 75% and 100% (75BPBM and 100BPBM) contrasting against unprocessed PBM (75PBM and 100PBM) at the same levels and FM based diets as the control. Juvenile barramundi with a mean initial weight of 3.78±0.16 g were stocked at a density of 20 fish per tank. After the 42 days of study, the final weight, specific growth rate and feed conversion ratios of fish fed 75PBM and 75BPBM were not significantly different from the control. However, 100% supplementation diets of 100PBM and 100BPBM resulted in reduced performance in all growth and feed variables except total feed intake and survival. The hind gut microvillus density was significantly higher (P<0.05) in fish fed 75BPBM, whereas the microvillus diameter remained unaffected with the other experimental diets when compared to the control. A reduction in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids of fish muscles led to a lower Σn-3/Σn-6 ratio in all dietary groups when compared to the control. The percentage of Σn-3 PUFAs decreased in 100% FM replacement diets of 100PBM and 100BPBM, while Σn-6 PUFAs increased when both bioprocessed and unprocessed PBM protein was increased in the diets. Fish fed bioprocessed diets had higher fatty acid hypocholesterolemic/hypercholesterolemic ratios (HH), indicating improved suitability for human consumption.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Ácidos Grasos/biosíntesis , Peces/crecimiento & desarrollo , Peces/metabolismo , Tracto Gastrointestinal/fisiología , Productos Avícolas , Envejecimiento , Animales , Acuicultura , Lipogénesis
13.
Fish Shellfish Immunol ; 89: 61-70, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30904684

RESUMEN

This study was conducted to investigate the effects that tuna hydrolysate (TH) supplementation in poultry by-product meal (PBM) diets would have on growth, immunity and resistance to Vibrio harveyi infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isocaloric diets containing fishmeal (FM) without TH supplementation (control) and four diets with 10% TH supplementation viz. a FM protein diet (FMBD + TH), a 75% PBM protein diet (LPBM + TH) and two 90% PBM protein diets, either bioprocessed (BPBM + TH) or unprocessed (HPBM + TH), were formulated for juvenile barramundi, Lates calcarifer. The diets were fed to triplicate groups of juvenile barramundi (average pool weight 12.63 ±â€¯0.11 g) for 10 weeks. Significantly (P < 0.05) higher final body weights and specific growth rates were noted in fish fed with FMBD + TH and BPBM + TH diets when compared to the control. Transmission electron microscopy observation of fish distal intestines revealed a significant enhancement of microvilli length in fish fed FMBD + TH and BPBM + TH whereas scanning electron microscopy analysis found no significant difference in microvilli density. A bacterial challenge with Vibrio harveyi was conducted for 14 days after the growth trial to test the immune response and survival of barramundi. In the pre-challenge condition, a significant reduction in blood glucose was found in BPBM + TH compared to the control, and fish in the post-challenge at 24 h had higher glucose levels compared to fish in the pre- and post-challenge conditions at 72 h. The serum lysozyme activity was significantly higher in FMBD + TH and BPBM + TH compared to the control and fish at 72 h post-challenge exhibited higher lysozyme activity in each treatment compared to all dietary groups in the post-challenge condition at 24 h and to HPBM + TH and BPBM + TH in the pre-challenge condition. Fish fed FMBD + TH, LPBM + TH and BPBM + TH diets had significantly higher survival to the bacterial challenge than fish in the control and HPBM + TH. These results showed that PBM supplemented with TH could successfully replace FM without compromising growth, however, bioprocessed PBM supplemented with TH (BPBM + TH) may significantly improve growth performance, immune response, intestinal health and disease resistance in juvenile barramundi.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata/efectos de los fármacos , Perciformes/inmunología , Hidrolisados de Proteína/química , Atún , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Resistencia a la Enfermedad/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Perciformes/crecimiento & desarrollo , Productos Avícolas/análisis , Vibrio/fisiología , Vibriosis/inmunología , Vibriosis/veterinaria
14.
Front Physiol ; 10: 1635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082185

RESUMEN

A feeding trial was carried out to evaluate the effects of substitution of fishmeal (FM) by dietary poultry by-product meal, fermented by Lactobacillus casei and Saccharomyces cerevisiae on growth, intestinal health, microbial composition, immune related cytokines and disease resistance of freshwater crayfish, marron (Cherax cainii) against Vibrio mimicus. Two isonitrogenous and isocaloric diets were formulated by replacing FM protein with fermented poultry by-product meal (FPBM) protein at 0% (Control) and 75% (FPBM), and fed marron for 70 days. The results indicated no significant difference (P > 0.05) in final body weights between two groups of marron, whilst intestinal microvilli number per fold was increased in marron fed FPBM than the control. The 16S rRNA sequences revealed an increased number of Lactobacillus and Streptococcus, and decreased number of Aeromonas at genus level in the distal intestine of marron fed FPBM. Marron fed FPBM showed up-regulated expression of IL-8, IL-10, and IL-17F genes in the distal intestine. Significantly (P < 0.05) increased lysozyme and phagocytic activity, and higher survival was found in marron fed FPBM following a bacterial challenge with Vibrio mimicus. Therefore, it is concluded that FPBM is beneficial to marron in terms of microbial community, immune-related cytokines and disease resistance against V. mimicus.

15.
Sci Rep ; 8(1): 15942, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374125

RESUMEN

This study investigated the effects of tuna hydrolysate (TH) inclusion in fishmeal (FM) based diets on the growth performance, innate immune response, intestinal health and resistance to Streptococcus iniae infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isoenergetic experimental diets were prepared with TH, replacing FM at levels of 0% (control) 5%, 10%, 15% and 20%, and fed fish to apparent satiation three times daily for 8 weeks. The results showed that fish fed diets containing 5% and 10% TH had significantly higher final body weight and specific growth rate than the control. A significant reduction in blood glucose was found in fish fed 10%, 15% and 20% TH compared to those in the control whereas none of the other measured blood and serum indices were influenced by TH inclusion. Histological observation revealed a significant enhancement in goblet cell numbers in distal intestine of fish fed 5 to 10% TH in the diet. Moreover, fish fed 10% TH exhibited the highest resistance against Streptococcus iniae infection during a bacterial challenge trial. These findings therefore demonstrate that the replacement of 5 to 10% FM with TH improves growth, immune response, intestinal health and disease resistance in juvenile barramundi.


Asunto(s)
Dieta , Resistencia a la Enfermedad/inmunología , Intestinos/patología , Perciformes/crecimiento & desarrollo , Streptococcus iniae/patogenicidad , Alimentación Animal , Animales , Proteínas del Sistema Complemento/metabolismo , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/patología , Estimación de Kaplan-Meier , Hígado/patología , Muramidasa/sangre , Perciformes/inmunología , Atún/metabolismo
16.
PeerJ ; 6: e4870, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29888126

RESUMEN

Conventional aquaculture feed materials available in Australia are expensive, which has prompted the search for alternatives that would be cost-effective and locally available. The present study was undertaken in order to maximize the use of a tuna hydrolysate (TH), which was produced locally from the tuna-processing discards. The growth performance, biochemical status, antioxidant capacity and liver health of juvenile barramundi (Lates calcarifer) were assessed. Two series of isonitrogenous and isocaloric diets labelled as TH50, TH75 (non-fermented tuna hydrolysate) and FTH50, FTH75 (fermented tuna hydrolysate) were formulated to replace FM at 50% and 75%, respectively. A basal diet without the TH supplementation was used as a control. The experimental diets were fed to the triplicate groups of fish three times a day for 56 days. The results of the experiment revealed that fish fed on both fermented and non-fermented TH-containing diets significantly reduced (p < 0.05) the final body weight, weight gain and specific growth rate compared to the control. The highest apparent digestibility coefficients for dry matter, protein and lipid were obtained in the control group, and decreased with the increasing level of TH in the diets. However, the whole-body proximate compositions and the blood biochemical indices of fish were not affected by the TH inclusion in the diets. The fish fed on TH diets of TH50, FTH50 and TH75 exhibited reduced (p < 0.05) glutathione peroxidase (GPx) activity compared to the control; whereas the FTH75 exhibited no difference with the control. The excessive inclusion of TH in the diets of TH75 and FTH75 resulted in cytoplasmic vacuolization, with an increased amount of lipid accumulation, and necrosis in the liver tissue. These results indicated that the replacement of the FM protein with TH at 50% and 75% inclusion levels negatively affected the growth performance, feed utilization, and digestibility in juvenile barramundi; and it also increased the potential risk of hepatic failure in the fish. Further investigation is, therefore, required in order to optimize the TH levels in the fish diets which would be suitable for the growth of fish, as well as for maintaining the enhanced biochemical response in juvenile barramundi.

17.
Food Sci Nutr ; 4(3): 479-89, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27247777

RESUMEN

Quality assessment of finfish fillets during storage is important to be able to predict the shelf life of the fresh product during distribution. Microbial, chemical (pH, TMA, and TVB-N), and sensory (Quality index assessment QIA, Torry scheme) changes in vacuum-packaged blue-spotted emperor (Lethrinus sp), saddletail (Lutjanus malabaricus), crimson snapper (Lutjanus erythropterus), barramundi (Lates calcarifer), and Atlantic salmon (Salmo salar) fillets stored at 4°C were evaluated for 5 days. Microbiological study included evaluation of TVC (total viable counts), total psychrotrophic organisms, and H2S-producing bacteria. Numbers increased during storage time and reached an average of 8.5, 8.5, and 9.2 log10 cfu/g, respectively, for the five different fish species. These levels were above accepted microbiological limits for fish fillets. Although the sensory analyses showed a decrease in quality, none of the finfish fillets were considered unacceptable at the end of the storage trial. Chemically, there was a slight pH increase, but trimethylamine (TMA) levels remained low. However, total volatile basic nitrogen (TVB-N) levels increased over time, reaching levels above 35 mg/100 g for blue spotted emperor, saddletail snapper, and crimson snapper by the end of the storage period. Results show that the deterioration of finfish fillet quality is a complex event of biochemical, sensory, and microbial factors, and multiple analyses may be required to define acceptability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA