Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 987650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312555

RESUMEN

The use of silver nanoparticles (NPs) in medical devices is constantly increasing due to their excellent antimicrobial properties. In wound dressings, Ag NPs are commonly added in large excess to exert a long-term and constant antimicrobial effect, provoking an instantaneous release of Ag ions during their use or the persistence of unused NPs in the wound dressing that can cause a release of Ag during the end-of-life of the product. For this reason, a Safe-by-Design procedure has been developed to reduce potential environmental risks while optimizing functionality and costs of wound dressings containing Ag NPs. The SbD procedure is based on ad-hoc criteria (e.g., mechanical strength, antibacterial effect, leaching of Ag from the product immersed in environmental media) and permits to identify the best one among five pre-market alternatives. A ranking of the SbD alternatives was obtained and the safer solution was selected based on the selected SbD criteria. The SbD framework was also applied to commercial wound dressings to compare the SbD alternatives with products already on the market. The iterative procedure permitted to exclude one of the alternatives (based on its low mechanical strength) and proved to be an effective approach that can be replicated to support the ranking, prioritisation, and selection of the most promising options early in the innovation process of nano-enabled medical devices as well as to encourage the production of medical devices safer for the environment.

2.
Nanotoxicology ; 16(4): 484-499, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35913849

RESUMEN

Due to the unique characteristics of nanomaterials (NM) there has been an increase in their use in nanomedicines and innovative medical devices (MD). Although large numbers of NMs have now been developed, comprehensive safety investigations are still lacking. Current gaps in understanding the potential mechanisms of NM-induced toxicity can make it challenging to determine the safety testing necessary to support inclusion of NMs in MD applications. This article provides guidance for implementation of pre-clinical tailored safety assessment strategies with the aim to increase the translation of NMs from bench development to clinical use. Integrated Approaches to Testing and Assessment (IATAs) are a key tool in developing these strategies. IATAs follow an iterative approach to answer a defined question in a specific regulatory context to guide the gathering of relevant information for safety assessment, including existing experimental data, integrated with in silico model predictions where available and appropriate, and/or experimental procedures and protocols for generating new data to fill gaps. This allows NM developers to work toward current guidelines and regulations, while taking NM specific considerations into account. Here, an example IATA for NMs with potential for direct blood contact was developed for the assessment of haemocompatibility. This example IATA brings together the current guidelines for NM safety assessment within a framework that can be used to guide information and data gathering for the safety assessment of intravenously injected NMs. Additionally, the decision framework underpinning this IATA has the potential to be adapted to other testing needs and regulatory contexts.


Asunto(s)
Nanoestructuras , Pruebas de Toxicidad , Simulación por Computador , Nanoestructuras/toxicidad , Medición de Riesgo/métodos , Pruebas de Toxicidad/métodos
3.
NanoImpact ; 25: 100373, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35559879

RESUMEN

The assessment of the safety of nano-biomedical products for patients is an essential prerequisite for their market authorization. However, it is also required to ensure the safety of the workers who may be unintentionally exposed to the nano-biomaterials (NBMs) in these medical applications during their synthesis, formulation into products and end-of-life processing and also of the medical professionals (e.g., nurses, doctors, dentists) using the products for treating patients. There is only a handful of workplace risk assessments focussing on NBMs used in medical applications. Our goal is to contribute to increasing the knowledge in this area by assessing the occupational risks of magnetite (Fe3O4) nanoparticles coated with PLGA-b-PEG-COOH used as contrast agent in magnetic resonance imaging (MRI) by applying the software-based Decision Support System (DSS) which was developed in the EU H2020 project BIORIMA. The occupational risk assessment was performed according to regulatory requirements and using state-of-the-art models for hazard and exposure assessment, which are part of the DSS. Exposure scenarios for each life cycle stage were developed using data from literature, inputs from partnering industries and results of a questionnaire distributed to healthcare professionals, i.e., physicians, nurses, technicians working with contrast agents for MRI. Exposure concentrations were obtained either from predictive exposure models or monitoring campaigns designed specifically for this study. Derived No-Effect Levels (DNELs) were calculated by means of the APROBA tool starting from in vivo hazard data from literature. The exposure estimates/measurements and the DNELs were used to perform probabilistic risk characterisation for the formulated exposure scenarios, including uncertainty analysis. The obtained results revealed negligible risks for workers along the life cycle of magnetite NBMs used as contrast agent for the diagnosis of tumour cells in all exposure scenarios except in one when risk is considered acceptable after the adoption of specific risk management measures. The study also demonstrated the added value of using the BIORIMA DSS for quantification and communication of occupational risks of nano-biomedical applications and the associated uncertainties.


Asunto(s)
Medios de Contraste , Óxido Ferrosoférrico , Medios de Contraste/efectos adversos , Humanos , Exposición Profesional , Medición de Riesgo/métodos , Gestión de Riesgos , Lugar de Trabajo
4.
Environ Int ; 99: 78-86, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27989526

RESUMEN

A critical analysis of the available engineered nanomaterials (ENMs) environmental fate modelling approaches indicates that existing tools do not satisfactorily account for the complexities of nanoscale phenomena. Fractal modelling (FM) can complement existing kinetic fate models by including more accurate interpretations of shape and structure, density and collision efficiency parameters to better describe homo- and heteroaggregation. Pathways to including hierarchical symmetry concepts and a route to establishing a structural classification of nanomaterials based on FM are proposed.


Asunto(s)
Ambiente , Nanoestructuras , Fractales , Humanos , Modelos Teóricos , Nanoestructuras/química
5.
Arch Physiol Biochem ; 109(4): 331-6, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11935368

RESUMEN

The oxidative stress is considered to be involved in the pathophysiology of cancers. In the current study we explored the oxidative stress in patients with different cancers and corresponding benign diseases by evaluation of the level of lipid peroxidation products (MDA level) in the plasma and the activity of erythrocyte antioxidant defense enzymes superoxide dismutase (SOD) and catalase (CAT). Significantly higher plasma levels of lipid peroxidation products were detected in patients with early and advanced cancers in comparison to the healthy volunteers (mean 3.1 micromol/l and 2.3 micromol/l, p = 0.0003 and p = 0.029, respectively, t-test). In addition, 10-20 days after radical operations of cancer patients with normal postoperative recovery period, the plasma levels of MDA decreased and reached values close to the controls (mean 2.0 micromol/l). SOD in erythrocytes of patients with benign diseases and malignant solid tumors before and after surgery did not differ from that of the controls. In contrast, CAT activity of patients with early cancers was found to be significant higher than that of the controls (mean 22157.2 U/gHb vs. 12832.0 U/gHb, p = 0.032, t-test). A decrease of CAT activity was observed after surgery (mean 15225.0 U/gHb). In conclusion, our results suggest the presence of an increased oxidative stress accompanied by a lack of changes of erythrocyte SOD activity and an adaptive increase of CAT activity.


Asunto(s)
Catalasa/metabolismo , Malondialdehído/sangre , Neoplasias/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Adulto , Anciano , Antioxidantes/metabolismo , Eritrocitos/enzimología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/patología , Neoplasias/cirugía , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...