Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Platelets ; 35(1): 2336093, 2024 Dec.
Article En | MEDLINE | ID: mdl-38602464

Platelet aggregation is a complicated process mediated by different signaling pathways. As the process is highly complex and apparently redundant, the relationships between these pathways are not yet fully known. The aim of this project was to study the interconnections among seven different aggregation pathways in a group of 53 generally healthy volunteers aged 20 to 66 years. Platelet aggregation was induced with thrombin receptor activating peptide 6 (TRAP), arachidonic acid (AA), platelet activating factor 16 (PAF), ADP, collagen, thromboxane A2 analogue U46619 or ristocetin (platelet agglutination) ex vivo in fasting blood samples according to standardized timetable protocol. Additionally, some samples were pre-treated with known clinically used antiplatelet drugs (vorapaxar, ticagrelor or acetylsalicylic acid (ASA)). Significant correlations among all used inducers were detected (Pearson correlation coefficients (rP): 0.3 to 0.85). Of all the triggers, AA showed to be the best predictor of the response to other inducers with rP ranging from 0.66 to 0.85. Interestingly, the antiplatelet response to ticagrelor strongly predicted the response to unrelated drug vorapaxar (rP = 0.71). Our results indicate that a response to one inducer can predict the response for other triggers or even to an antiplatelet drug. These data are useful for future testing but should be also confirmed in patients.


What is the context?• Platelet activation is a complicated process with multiple signaling cascades involved.• A total of seven common platelet triggers (ADP, collagen, TRAP-6, PAF, arachidonic acid/AA/, ristocetin and U46619) were tested.• The process is dependent on many factors including sex, age, concomitant disease(s), pharmacotherapy.What is new?• There were significant correlations between all tested aggregatory cascades.• AA has the highest rate of response predictability in our heterogeneous generally healthy volunteer group.• There was no correlation between impedance aggregometry in whole blood and turbidimetric measurement with platelet-rich plasma.What is the impact?• The effect of antiplatelet drugs can be assessed from the reaction to different trigger(s) at least in this group of healthy patients.• Future studies must test these relationships in patients with different diseases.


Lactones , Platelet Aggregation Inhibitors , Platelet Aggregation , Pyridines , Humans , Healthy Volunteers , Ticagrelor , Platelet Aggregation Inhibitors/pharmacology , Arachidonic Acid/pharmacology
2.
Article En | MEDLINE | ID: mdl-37129685

BACKGROUND AND AIMS: It is well known that elevated cholesterol is associated with enhanced platelet aggregation and patients suffering from familial hypercholesterolemia (FH) have a high risk of thrombotic cardiovascular events. Although decreasing cholesterol level is associated with attenuation of platelet hyperactivity, there are currently no data on the effect of convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9ab) on platelet reactivity in FH. The aim of the study was to analyse the impact of different therapies including PCSK9ab on platelet aggregation in FH. METHODS: This study enrolled all 15 patients treated in the University Hospital Hradec Králové for FH. PCSK9ab have been administered in 12 of 15 patients while 8 patients were also undergoing lipid apheresis. Blood samples from all patients including pre- and post-apheresis period were tested for platelet aggregation triggered by 7 inducers, and the effect of 3 clinically used drugs (acetylsalicylic acid, ticagrelor and vorapaxar) was compared as well. RESULTS: Although apheresis decreased the reactivity of platelets in general, platelet responses were not different between non-apheresis patients treated with PCSK9ab and apheresis patients (post-apheresis values) with the exception of ristocetin. However, when compared to age-matched healthy population, FH patients had significantly lower platelet aggregation responses to 4 out of 7 used inducers and higher profit from 2 out of 3 used antiplatelet drugs even after exclusion of FH patients regularly receiving conventional antiplatelet treatment. CONCLUSION: This study showed for the first time the suitability of PCSK9ab treatment for reduction of platelet reactivity in FH patients.

3.
Nutrients ; 15(8)2023 Apr 11.
Article En | MEDLINE | ID: mdl-37111061

Elevated low-density lipoprotein (LDL) cholesterol levels lead to atherosclerosis and platelet hyperaggregability, both of which are known culprits of arterial thrombosis. Normalization of LDL cholesterol in familial hypercholesterolemia (FH) is not an easy task and frequently requires specific treatment, such as regularly performed lipid apheresis and/or novel drugs such as proprotein convertase subtilisin kexin 9 monoclonal antibodies (PCSK9Ab). Moreover, a high resistance rate to the first-line antiplatelet drug acetylsalicylic acid (ASA) stimulated research of novel antiplatelet drugs. 4-methylcatechol (4-MC), a known metabolite of several dietary flavonoids, may be a suitable candidate. The aim of this study was to analyse the antiplatelet effect of 4-MC in FH patients and to compare its impact on two FH treatment modalities via whole-blood impedance aggregometry. When compared to age-matched, generally healthy controls, the antiplatelet effect of 4-MC against collagen-induced aggregation was higher in FH patients. Apheresis itself improved the effect of 4-MC on platelet aggregation and blood from patients treated with this procedure and pretreated with 4-MC had lower platelet aggregability when compared to those solely treated with PCKS9Ab. Although this study had some inherent limitations, e.g., a low number of patients and possible impact of administered drugs, it confirmed the suitability of 4-MC as a promising antiplatelet agent and also demonstrated the effect of 4-MC in patients with a genetic metabolic disease for the first time.


Blood Component Removal , Hyperlipoproteinemia Type II , Humans , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Subtilisin , Proprotein Convertase 9 , Proprotein Convertases/therapeutic use , Hyperlipoproteinemia Type II/drug therapy , Cholesterol, LDL , Blood Component Removal/methods
4.
Med Chem ; 19(5): 495-507, 2023.
Article En | MEDLINE | ID: mdl-36201264

BACKGROUND: Cobalt is an essential trace element, but it can also rarely cause cobalt toxicity due to its release from cobalt-containing medical devices. Currently, there are no approved selective cobalt chelators, which would represent an optimal treatment modality. OBJECTIVE: This study aimed to develop a simple and complex methodological approach for screening potential cobalt chelators and evaluating their potential toxicity. METHODS: Firstly, a simple spectrophotometric assay employing 1-nitroso-2-naphthol-3,6- disulfonic acid disodium salt (NNDSA) for screening cobalt chelation was standardized at a pathophysiologically relevant range of pH 4.5-7.5. Then, the suitability of the method was verified using four known metal chelators (EDTA, 8-hydroxyquinoline, chloroxine and nitroxoline). As cobalt can catalyse the Fenton reaction, the potential toxicity of cobalt-chelator complexes was also determined by employing a novel HPLC method with coulometric detection. The effect on erythrocyte haemolysis was tested as well. RESULTS: The NNDSA method had high sensitivity enabling the detection of 25-200 nM of cobalt ions depending on pH conditions. Measurements could be carried out in a wide range of wavelengths from 470 to 540 nm. All tested complexes of the selected chelators decreased the rate of the Fenton reaction. Interestingly, chloroxine mixed with cobalt ions caused marked lysis of erythrocytes in contrast to the other compounds. CONCLUSION: The described complex methodological approach could serve as a simple yet precise tool for evaluating novel, effective and safe cobalt chelators.


Chelating Agents , Cobalt , Cobalt/chemistry , Ions , Oxyquinoline
5.
Semin Thromb Hemost ; 49(5): 488-506, 2023 Jul.
Article En | MEDLINE | ID: mdl-36206768

The process of platelet aggregation is often influenced by several factors including sex and age. A literature review confirmed the existence of sex-related differences in platelet aggregation. Although 68 out of 78 papers found such differences, there are still some controversies regarding these differences, which can be due to multiple factors (age, trigger, concomitant disease, sample handling, etc.). These outcomes are discussed in line with novel results obtained from a local study, in which blood samples from a total of 53 overall healthy women and men with ages ranging from 20 to 66 years were collected. Aggregation was induced with seven different triggers (ristocetin, thrombin receptor activating peptide 6 [TRAP-6], arachidonic acid [AA], platelet-activating factor 16 [PAF-16], ADP, collagen, or thromboxane A2 analog U-46619) ex vivo. In addition, three FDA-approved antiplatelet drugs (vorapaxar, ticagrelor, or acetylsalicylic acid [ASA]) were also tested. In general, women had higher aggregation responses to some agonists (ADP, TRAP), as well as lower benefit from inhibitors (ASA, vorapaxar). The aggregatory responses to AA and TRAP decreased with age in both sexes, while responses to ADP, U-46619, and PAF were affected by age only in women. In conclusion, more studies are needed to decipher the biological importance of sex-related differences in platelet aggregation in part to enable personalized antiplatelet treatment.


Platelet Aggregation Inhibitors , Platelet Aggregation , Male , Humans , Female , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Lactones/pharmacology , Aspirin/therapeutic use , Arachidonic Acid/pharmacology , Adenosine Diphosphate/pharmacology , Blood Platelets
6.
Nutrients ; 14(22)2022 Nov 13.
Article En | MEDLINE | ID: mdl-36432485

A polyphenol-rich diet has beneficial effects on cardiovascular health. However, dietary polyphenols generally have low bioavailability and reach low plasma concentrations. Small phenolic metabolites of these compounds formed by human microbiota are much more easily absorbable and could be responsible for this effect. One of these metabolites, 4-methylcatechol (4-MC), was suggested to be a potent anti-platelet compound. The effect of 4-MC was tested ex vivo in a group of 53 generally healthy donors using impedance blood aggregometry. The mechanism of action of this compound was also investigated by employing various aggregation inducers/inhibitors and a combination of aggregometry and enzyme linked immunosorbent assay (ELISA) methods. 4-MC was confirmed to be more potent than acetylsalicylic acid on both arachidonic acid and collagen-triggered platelet aggregation. Its clinically relevant effect was found even at a concentration of 10 µM. Mechanistic studies showed that 4-MC is able to block platelet aggregation caused by the stimulation of different pathways (receptors for the von Willebrand factor and platelet-activating factor, glycoprotein IIb/IIIa, protein kinase C, intracellular calcium elevation). The major mechanism was defined as interference with cyclooxygenase-thromboxane synthase coupling. This study confirmed the strong antiplatelet potential of 4-MC in a group of healthy donors and defined its mechanism of action.


Catechols , Immunologic Tests , Humans , Catechols/pharmacology , Phenols , Platelet Function Tests , Polyphenols
7.
Toxins (Basel) ; 14(7)2022 07 15.
Article En | MEDLINE | ID: mdl-35878229

Isoquinoline alkaloids have multiple biological activities, which might be associated with positive pharmacological effects as well as negative adverse reactions. As bleeding was suggested to be a side effect of the isoquinoline alkaloid berberine, we decided to ascertain if different isoquinoline alkaloids could influence hemocoagulation through the inhibition of either platelet aggregation or blood coagulation. Initially, a total of 14 compounds were screened for antiplatelet activity in whole human blood by impedance aggregometry. Eight of them demonstrated an antiplatelet effect against arachidonic acid-induced aggregation. Papaverine and bulbocapnine were the most potent compounds with biologically relevant IC50 values of 26.9 ± 12.2 µM and 30.7 ± 5.4 µM, respectively. Further testing with the same approach confirmed their antiplatelet effects by employing the most physiologically relevant inducer of platelet aggregation, collagen, and demonstrated that bulbocapnine acted at the level of thromboxane receptors. None of the alkaloids tested had an effect on blood coagulation measured by a mechanical coagulometer. In conclusion, the observed antiplatelet effects of isoquinoline alkaloids were found mostly at quite high concentrations, which means that their clinical impact is most likely low. Bulbocapnine was an exception. It proved to be a promising antiplatelet molecule, which may have biologically relevant effects.


Alkaloids , Platelet Aggregation , Alkaloids/pharmacology , Blood Platelets , Humans , Isoquinolines/pharmacology , Platelet Aggregation Inhibitors/pharmacology
8.
Food Chem ; 394: 133461, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-35728467

Flavonoids are considered beneficial, but they may exhibit pro-oxidative effects likely due to metal reducing properties. For the first time, 24 structurally related flavonoids were compared for copper reduction, and modulation of the copper-triggered Fenton reaction and lysis of erythrocytes. The vast majority of flavonoids reduced cupric ions; their behaviour ranged from progressive gradual reduction through bell-shaped, neutral, to a blockade of spontaneous reduction. Similarly, different behaviours were observed with the Fenton reaction. Flavone was the only flavonoid that potentiated copper-triggered haemolysis (155 ± 81 % at twice the amount of Cu2+), while 18 flavonoids were at least partly protective in some concentrations. Only 5-hydroxyflavone did not reduce Cu2+ and behaved as an antioxidant in both assays (reduction of 60 ± 10 % and 88 ± 1%, respectively, at an equimolar ratio with Cu2+). In conclusion, relatively subtle structural differences resulted in very different anti/prooxidant behaviour depending on the model.


Copper , Flavonoids , Antioxidants/chemistry , Copper/chemistry , Flavonoids/chemistry , Hemolysis , Humans , Ions , Oxidation-Reduction
9.
J Agric Food Chem ; 70(20): 6134-6144, 2022 May 25.
Article En | MEDLINE | ID: mdl-35544338

The current chelation therapy has several drawbacks, including lack of selectivity, which could lead to trace metal depletion. Consequently, the proper function of metalloenzymes can be disrupted. Flavonoids possess chelating properties and hence interfere with the homeostasis of essential metals. We focused on zinc, an important trace metal required for the function of many enzymes and transcription factors. After making an initial evaluation of the Zn2+-chelating properties of a series of flavonoids, the effect of these compounds on various zinc-containing enzymes was also investigated. We performed enzyme inhibition assays spectrophotometrically using yeast and equine alcohol dehydrogenases and bovine glutamate dehydrogenase. Nine of the 21 flavonoids tested were capable of chelating Zn2+. Baicalein and 3-hydroxyflavone were the most potent Zn2+ chelators under slightly acidic and neutral pH conditions. This chelation was also confirmed by the ability to reverse Zn2+-induced enzymatic inhibition of bovine glutamate dehydrogenase. Although some flavonoids were also able to inhibit zinc-containing alcohol dehydrogenases, this inhibition was likely not caused by Zn2+ chelation. Luteolin was a relatively potent inhibitor of these enzymes regardless of the presence of Zn2+. Docking studies confirmed the binding of active flavonoids to equine alcohol dehydrogenase without any significant interaction with the catalytic zinc.


Flavonoids , Zinc , Alcohol Dehydrogenase/metabolism , Animals , Cattle , Chelating Agents/chemistry , Glutamate Dehydrogenase , Horses , Metals/metabolism , Zinc/metabolism
10.
Nutrients ; 14(3)2022 Jan 22.
Article En | MEDLINE | ID: mdl-35276844

This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.


Avitaminosis , Vitamin B Complex , Humans , Thiamine , Vitamin A , Vitamin K
11.
Biomolecules ; 12(1)2022 01 12.
Article En | MEDLINE | ID: mdl-35053265

Flavonoids are associated with positive cardiovascular effects. However, due to their low bioavailability, metabolites are likely responsible for these properties. Recently, one of these metabolites, 4-methylcatechol, was described to be a very potent antiplatelet compound. This study aimed to compare its activity with its 22 close derivatives both of natural or synthetic origin in order to elucidate a potential structure-antiplatelet activity relationship. Blood from human volunteers was induced to aggregate by arachidonic acid (AA), collagen or thrombin, and plasma coagulation was also studied. Potential toxicity was tested on human erythrocytes as well as on a cancer cell line. Our results indicated that 17 out of the 22 compounds were very active at a concentration of 40 µM and, importantly, seven of them had an IC50 on AA-triggered aggregation below 3 µM. The effects of the most active compounds were confirmed on collagen-triggered aggregation too. None of the tested compounds was toxic toward erythrocytes at 50 µM and four compounds partly inhibited proliferation of breast cancer cell line at 100 µM but not at 10 µM. Additionally, none of the compounds had a significant effect on blood coagulation or thrombin-triggered aggregation. This study hence reports four phenol derivatives (4-ethylcatechol, 4-fluorocatechol, 2-methoxy-4-ethylphenol and 3-methylcatechol) suitable for future in vivo testing.


Phenol , Platelet Aggregation , Humans , Phenols/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Thrombin/pharmacology
12.
Med Chem ; 18(5): 536-543, 2022.
Article En | MEDLINE | ID: mdl-34702153

BACKGROUND: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. OBJECTIVE: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. METHODS: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. RESULTS: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase- 1. CONCLUSION: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.


Heterocyclic Compounds , Platelet Aggregation Inhibitors , Aspirin/pharmacology , Blood Platelets , Heterocyclic Compounds/pharmacology , Humans , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology
13.
J Pharm Pharmacol ; 74(6): 887-895, 2022 Jun 09.
Article En | MEDLINE | ID: mdl-34106261

OBJECTIVES: Both pyridine and pyrano derivatives have been previously shown to possess biologically relevant activity. In this study, we report the incorporation of these two scaffolds into one molecule. METHODS: The designed 3,3-dimethyl-6-oxopyrano[3,4-c]pyridines were synthesized by the acylation of enamine under Stork conditions followed by condensation of formed ß-diketones with 2-cyanoacetamide. The structures of these compounds were confirmed by using a wide spectrum of physico-chemical methods. Their antiplatelet, anticoagulant and vasodilatory activity together with toxicity were evaluated. KEY FINDINGS: A series of 6-oxopyrano[3,4-c]pyridines 3a-j was obtained. Four of these compounds were reported for the first time. None of the tested compounds demonstrated anticoagulant effect but 8-methyl derivative (3a) was a potent antiplatelet compound with IC50 numerically twice as low as the clinically used acetylsalicylic acid. A series of further mechanistic tests showed that 3a interferes with calcium signaling. The compound is also not toxic and in addition possesses vasodilatory activity as well. CONCLUSIONS: Compound 3a is a promising inhibitor of platelet aggregation, whose mechanism of action should be studied in detail.


Platelet Aggregation Inhibitors , Platelet Aggregation , Anticoagulants/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship
14.
Nutrients ; 13(12)2021 Nov 25.
Article En | MEDLINE | ID: mdl-34959790

Silymarin is known for its hepatoprotective effects. Although there is solid evidence for its protective effects against Amanita phalloides intoxication, only inconclusive data are available for alcoholic liver damage. Since silymarin flavonolignans have metal-chelating activity, we hypothesized that silymarin may influence alcoholic liver damage by inhibiting zinc-containing alcohol dehydrogenase (ADH). Therefore, we tested the zinc-chelating activity of pure silymarin flavonolignans and their effect on yeast and equine ADH. The most active compounds were also tested on bovine glutamate dehydrogenase, an enzyme blocked by zinc ions. Of the six flavonolignans tested, only 2,3-dehydroderivatives (2,3-dehydrosilybin and 2,3-dehydrosilychristin) significantly chelated zinc ions. Their effect on yeast ADH was modest but stronger than that of the clinically used ADH inhibitor fomepizole. In contrast, fomepizole strongly blocked mammalian (equine) ADH. 2,3-Dehydrosilybin at low micromolar concentrations also partially inhibited this enzyme. These results were confirmed by in silico docking of active dehydroflavonolignans with equine ADH. Glutamate dehydrogenase activity was decreased by zinc ions in a concentration-dependent manner, and this inhibition was abolished by a standard zinc chelating agent. In contrast, 2,3-dehydroflavonolignans blocked the enzyme both in the absence and presence of zinc ions. Therefore, 2,3-dehydrosilybin might have a biologically relevant inhibitory effect on ADH and glutamate dehydrogenase.


Alcohol Dehydrogenase/antagonists & inhibitors , Chelating Agents/pharmacology , Flavonolignans/pharmacology , Silymarin/pharmacology , Zinc/isolation & purification , Animals , Glutamate Dehydrogenase/antagonists & inhibitors , Horses , Silybin/pharmacology , Yeasts/drug effects , Zinc/metabolism
15.
J Agric Food Chem ; 69(21): 5926-5937, 2021 Jun 02.
Article En | MEDLINE | ID: mdl-34003649

Quercetin, a common flavonoid from human diet, is extensively metabolized. Its two metabolites with the preserved flavonoid core were tested in detail for their interactions with transition metals, iron and copper. Both compounds chelated both metals; however, there were some significant differences between them notwithstanding that the major chelation site (3-hydroxy-4-keto) was the same. The complex stoichiometries were also determined under different pH conditions and in both oxidation states. Mostly, complexes 2:1, flavonoid to metal, were observed. Both compounds reduced iron and copper in a bell-shaped manner with tamarixetin being less potent in general. Both metabolites potentiated the Fenton reaction triggered by iron, while they were able to decrease the copper-based Fenton reaction under acidic conditions. In cellular experiments, both metabolites attenuated the copper-triggered hemolysis with isorhamnetin being more potent. In conclusion, there are differences between methylated metabolites of quercetin in relation to their interactions with biologically relevant transition metals.


Copper , Quercetin , Disaccharides , Humans , Iron , Quercetin/analogs & derivatives
16.
Antioxidants (Basel) ; 10(5)2021 Apr 27.
Article En | MEDLINE | ID: mdl-33925336

2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.

17.
Nutrients ; 11(10)2019 Sep 24.
Article En | MEDLINE | ID: mdl-31554252

Silymarin is a traditional drug and food supplement employed for numerous liver disorders. The available studies indicate that its activities may be broader, in particular due to claimed benefits in some cardiovascular diseases, but the contributions of individual silymarin components are unclear. Therefore, we tested silymarin flavonolignans as pure diastereomers as well as their sulfated metabolites for potential vasorelaxant and antiplatelet effects in isolated rat aorta and in human blood, respectively. Eleven compounds from a panel of 17 tested exhibited a vasorelaxant effect, with half maximal effective concentrations (EC50) ranging from 20 to 100 µM, and some substances retained certain activity even in the range of hundreds of nM. Stereomers A were generally more potent as vasorelaxants than stereomers B. Interestingly, the most active compound was a metabolite-silychristin-19-O-sulfate. Although initial experiments showed that silybin, 2,3-dehydrosilybin, and 2,3-dehydrosilychristin were able to substantially block platelet aggregation, their effects were rapidly abolished with decreasing concentration, and were negligible at concentrations ≤100 µM. In conclusion, metabolites of silymarin flavonolignans seem to have biologically relevant vasodilatory properties, but the effect of silymarin components on platelets is low or negligible.


Aorta/drug effects , Flavonolignans/chemistry , Flavonolignans/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Animals , Humans , Male , Molecular Structure , Rats , Vasodilator Agents
18.
Mol Nutr Food Res ; 63(20): e1900261, 2019 08 07.
Article En | MEDLINE | ID: mdl-31343835

SCOPE: Intake of flavonoids from the diet can be substantial, and epidemiological studies suggest that these compounds can decrease the incidence of cardiovascular diseases by involvement with increased platelet aggregation. Although parent flavonoids possess antiplatelet effects, the clinical importance is disputable due to their very low bioavailability. Most of them are metabolized by human colon bacteria to smaller phenolic compounds, which reach higher plasma concentrations than the parent flavonoids. In this study, a series of 29 known flavonoid metabolites is tested for antiplatelet potential. METHODS AND RESULTS: Four compounds appear to have a biologically relevant antiplatelet effect using whole human blood. 4-Methylcatechol (4-MC) is clearly the most efficient being about 10× times more active than clinically used acetylsalicylic acid. This ex vivo effect is also confirmed using a potentially novel in-vivo-like ex ovo hen's egg model of thrombosis, where 4-MC significantly increases the survival of the eggs. The mechanism of action is studied and it seems that it is mainly based on the influence on intracellular calcium signaling. CONCLUSION: This study shows that some flavonoid metabolites formed by human microflora have a strong antiplatelet effect. This information can help to explain the antiplatelet potential of orally given flavonoids.


Catechols/pharmacology , Drug Evaluation, Preclinical/methods , Platelet Aggregation Inhibitors/pharmacology , Animals , Arachidonic Acid/pharmacology , Chick Embryo , Cyclooxygenase Inhibitors/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Platelet Aggregation/drug effects , Pyrogallol/pharmacology , Serotonin/metabolism , Thrombosis/drug therapy , Thromboxane-A Synthase/antagonists & inhibitors
19.
Phytomedicine ; 62: 152974, 2019 Sep.
Article En | MEDLINE | ID: mdl-31181402

BACKGROUND: Isoflavonoids seem to possess positive cardiovascular and other beneficial effects in humans. HYPOTHESIS: Their low bioavailability, however, indicates that small isoflavonoid metabolites formed by human microflora can significantly contribute to these activities. STUDY DESIGN: Testing antiplatelet activity ex vivo in human blood and interaction with transition metals in vitro. METHODS: The effect on platelet aggregation induced by different triggers (arachidonic acid, collagen, ADP, TRAP-6), and interactions with transition metals (iron and copper chelation/reduction) were evaluated against four isoflavonoid-specific metabolites: S-equol; O-desmethylangolensin; 2-(4-hydroxyphenyl) propionic acid (HPPA); and 4-ethylphenol. RESULTS: S-equol, 4-ethylphenol and O-desmethylangolensin blocked platelet aggregation induced by arachidonic acid and collagen. S-equol even matched the potency of acetylsalicylic acid in the case of collagen, which is the most physiological inducer of aggregation. Moreover, their effects in general seemed to be biologically relevant and attainable at achievable plasma concentrations, with the exception of HPPA which was ineffective. While only O-desmethylangolensin mildly chelated iron and copper, all four compounds markedly reduced cupric ions. Their direct free radical scavenging effects seem to have little clinical relevance. CONCLUSION: This study has shown that S-equol, O-desmethylangolensin and 4-ethylphenol, arising from isoflavonoid intake, can have biologically relevant effects on platelet aggregation.


Copper/metabolism , Equol/metabolism , Iron/metabolism , Isoflavones/pharmacology , Phenols/metabolism , Aspirin/pharmacology , Biological Availability , Blood Platelets/drug effects , Humans , Isoflavones/metabolism , Male , Platelet Aggregation/drug effects
...