Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897355

RESUMEN

Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Activación Transcripcional , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
2.
J Cell Sci ; 127(Pt 1): 182-90, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190881

RESUMEN

Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.


Asunto(s)
Actinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema Nervioso/metabolismo , Factores de Transcripción/metabolismo , Actinas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
3.
Development ; 135(18): 3021-30, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18701547

RESUMEN

Neurogenesis requires precise control of cell specification and division. In Drosophila, the timing of cell division of the sensory organ precursor (SOP) is under strict temporal control. But how the timing of mitotic entry is determined remains poorly understood. Here, we present evidence that the timing of the G2-M transition is determined by when proneural proteins are degraded from SOPs. This process requires the E3 ubiquitin ligase complex, including the RING protein Sina and the adaptor Phyl. In phyl mutants, proneural proteins accumulate, causing delay or arrest in the G2-M transition. The G2-M defect in phyl mutants is rescued by reducing the ac and sc gene doses. Misexpression of phyl downregulates proneural protein levels in a sina-dependent manner. Phyl directly associates with proneural proteins to act as a bridge between proneural proteins and Sina. As phyl is a direct transcriptional target of Ac and Sc, our data suggest that, in addition to mediating cell cycle arrest, proneural protein initiates a negative-feedback regulation to time the mitotic entry of neural precursors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Genes de Insecto , Glutatión Transferasa/metabolismo , Hibridación in Situ , Mutación , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina-Proteína Ligasas/genética
4.
J Biol Chem ; 283(4): 2454-64, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18055457

RESUMEN

Emerging evidence shows that glycogen synthase kinase 3beta (GSK3beta) is involved in mitotic division and that inhibiting of GSK3beta kinase activity causes defects in spindle microtubule length and chromosome alignment. However, the purpose of GSK3beta involvement in spindle microtubule assembly and accurate chromosome segregation remains obscure. Here, we report that GSK3beta interacts with the spindle-associated protein Astrin both in vitro and in vivo. Additionally, Astrin acts as a substrate for GSK3beta and is phosphorylated at Thr-111, Thr-937 ((S/T)P motif) and Ser-974/Thr-978 ((S/T)XXX(S/T)-p motif; p is a phosphorylatable residue). Inhibition of GSK3beta impairs spindle and kinetochore accumulation of Astrin and spindle formation at mitosis, suggesting that Astrin association with the spindle microtubule and kinetochore may be dependent on phosphorylation by GSK3beta. Conversely, depletion of Astrin by small interfering RNA has no detectable influence on the localization of GSK3beta. Interestingly, in vitro assays demonstrated that Astrin enhances GSK3beta-mediated phosphorylation of other substrates. Moreover, we showed that coexpression of Astrin and GSK3beta differentially increases GSK3beta-mediated Tau phosphorylation on an unprimed site. Collectively, these data indicate that GSK3beta interacts with and phosphorylates the spindle-associated protein Astrin, resulting in targeting Astrin to the spindle microtubules and kinetochores. In turn, the GSK3beta-Astrin complex may also facilitate further physiological and pathological phosphorylation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Células HeLa , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación , ARN Interferente Pequeño/genética , Huso Acromático/genética , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Exp Cell Res ; 313(8): 1710-21, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17383637

RESUMEN

Human Ninein (hNinein) is implicated in centrosomal microtubule nucleation and microtubule anchoring in interphase cells and may act as a scaffold protein, but its direct interaction partners remain unexplored in the centrosome. In this report, we show clearly that a spindle-associated protein, Astrin, interacts and co-localizes with hNinein at the centrosome during the S and G2 phases, and this complex may dissociate in the M phase. We also demonstrate that the truncated forms of hNinein, which could interfere with gamma-tubulin and function as dominant-negative mutants, are able to affect Astrin localization to the centrosome. Moreover, siRNA-mediated knockdown of hNinein in HeLa cells causes Astrin to fail to target to the centrosome, whereas hNinein can localize at the centrosome in the absence of Astrin. In addition, reduction in hNinein protein levels causes mislocalization of Astrin with the spindle apparatus and results in the formation of an aberrant mitotic spindle. Collectively, these data suggest that hNinein is required for targeting Astrin to the centrosome during the S and G2 phases. We therefore propose a model wherein hNinein regulates the dynamic movement of Astrin throughout the cell cycle and this interaction, in turn, is required for maintenance of centrosome/spindle pole integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/fisiología , Proteínas del Citoesqueleto/metabolismo , Fase G2 , Proteínas Nucleares/metabolismo , Fase S , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular , Proteínas del Citoesqueleto/genética , Humanos , Modelos Biológicos , Proteínas Nucleares/genética , Unión Proteica , Tubulina (Proteína)/metabolismo , Técnicas del Sistema de Dos Híbridos
6.
Biochemistry ; 45(38): 11379-89, 2006 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16981698

RESUMEN

Although prominent FRAT/GBP exhibits a limited degree of homology to Axin, the binding sites on GSK3 for FRAT/GBP and Axin may overlap to prevent the effect of FRAT/GBP in stabilizing beta-catenin in the Wnt pathway. Using a yeast two-hybrid screen, we identified a novel protein, GSK3beta interaction protein (GSKIP), which binds to GSK3beta. We have defined a 25-amino acid region in the C-terminus of GSKIP that is highly similar to the GSK3beta interaction domain (GID) of Axin. Using an in vitro kinase assay, our results indicate that GSKIP is a good GSK3beta substrate, and both the full-length protein and a C-terminal fragment of GSKIP can block phosphorylation of primed and nonprimed substrates in different fashions. Similar to Axin GID(381-405) and FRATtide, synthesized GSKIPtide is also shown to compete with and/or block the phosphorylation of Axin and beta-catenin by GSK3beta. Furthermore, our data indicate that overexpression of GSKIP induces beta-catenin accumulation in the cytoplasm and nucleus as visualized by immunofluorescence. A functional assay also demonstrates that GSKIP-transfected cells have a significant effect on the transactivity of Tcf-4. Collectively, we define GSKIP as a naturally occurring protein that is homologous with the GSK3beta interaction domain of Axin and is able to negatively regulate GSK3beta of the Wnt signaling pathway.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Homología de Secuencia , Secuencia de Aminoácidos , Proteína Axina , Células Cultivadas , Clonación Molecular , Glucógeno Sintasa Quinasa 3 beta , Células HeLa , Humanos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Transducción de Señal , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...