Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37996996

RESUMEN

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica Ectópica , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bacterias/metabolismo , Proteínas de Unión al ADN/genética
2.
Plant Physiol ; 192(2): 1532-1547, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36843191

RESUMEN

Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glucosa/metabolismo , Proteínas de Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Transducción de Señal/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Plant J ; 111(5): 1383-1396, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35791282

RESUMEN

The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.


Asunto(s)
Arabidopsis , Tiamina , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Difosfatos/metabolismo , Homeostasis , Monoéster Fosfórico Hidrolasas/metabolismo , Tiamina/metabolismo , Tiamina Pirofosfato/metabolismo
4.
RNA Biol ; 15(11): 1385-1391, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30422048

RESUMEN

Plant pentatricopeptide repeat (PPR) proteins are mostly involved in chloroplast or mitochondrial RNA metabolism. However, direct evidence that correction of the molecular defects in the organelles can restore the plant phenotypes has yet to be demonstrated in a ppr mutant. Arabidopsis slow growth3 (slo3), a ppr mutant, is impaired in the splicing of mitochondrial nad7 intron 2. Here, we have used slo3 as an example to demonstrate that transformation of correctly spliced nad7 into the nuclear genome and targeting the Nad7 subunit into mitochondria can restore complex I activity and plant phenotypes in the mutant. These results provide direct evidence that the strong growth and developmental phenotypes of the slo3 mutant are caused by defects in mitochondrial nad7.


Asunto(s)
Proteínas de Arabidopsis/genética , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , NADH Deshidrogenasa/genética , Factores de Empalme de ARN/genética , ARN Mitocondrial/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Intrones/genética , Empalme del ARN/genética , ARN Mitocondrial/metabolismo
5.
Sci Rep ; 8(1): 11851, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087396

RESUMEN

The ACT domain (aspartate kinase, chorismate mutase and TyrA), an allosteric effector binding domain, is commonly found in amino acid metabolic enzymes. In addition to ACT domain-containing enzymes, plants have a novel family of ACT domain repeat (ACR) proteins, which do not contain any recognizable catalytic domain. Arabidopsis has 12 ACR proteins, whose functions are largely unknown. To study the functions of Arabidopsis ACR11, we have characterized two independent T-DNA insertion mutants, acr11-2 and acr11-3. RNA gel-blot analysis revealed that the expression of wild-type ACR11 transcripts was not detectable in the acr11 mutants. Interestingly, a lesion-mimic phenotype occurs in some rosette leaves of the acr11 mutants. In addition, high levels of reactive oxygen species (ROS), salicylic acid (SA), and callose accumulate in the mutant leaves when grown under normal conditions. The expression of several SA marker genes and the key SA biosynthetic gene ISOCHORISMATE SYNTHASE1 is up-regulated in the acr11 mutants. Furthermore, the acr11 mutants are more resistant to the infection of bacterial pathogen Pseudomonas syringae pathovar tomato DC3000. These results suggest that ACR11 may be directly or indirectly involved in the regulation of ROS and SA accumulation, which in turn modulates SA-associated defense responses and disease resistance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Enfermedades de las Plantas/genética , ARN Nucleotidiltransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Mutación , Oxidación-Reducción , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Pseudomonas syringae/fisiología , ARN Nucleotidiltransferasas/genética
6.
Sci Rep ; 7(1): 16885, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203827

RESUMEN

Ammonium has long been used as the predominant form of nitrogen source for paddy rice (Oryza sativa). Recently, increasing evidence suggests that nitrate also plays an important role for nitrogen acquisition in the rhizosphere of waterlogged paddy rice. Ammonium and nitrate have a synergistic effect on promoting rice growth. However, the molecular responses induced by simultaneous treatment with ammonium and nitrate have been less studied in rice. Here, we performed transcriptome analysis to identify genes that are rapidly regulated by ammonium nitrate (1.43 mM, 30 min) in rice roots. The combination of ammonium and nitrate preferentially induced the expression of nitrate-responsive genes. Gene ontology enrichment analysis revealed that the early ammonium nitrate-responsive genes were enriched in "regulation of transcription, DNA-dependent" and "protein amino acid phosphorylation" indicating that some of the genes identified in this study may play an important role in nitrogen sensing and signaling. Several defense/stress-responsive genes, including some encoding transcription factors and mitogen-activated protein kinase kinase kinases, were also rapidly induced by ammonium nitrate. These results suggest that nitrogen metabolism, signaling, and defense/stress responses are interconnected. Some of the genes identified here may be involved in the interaction of nitrogen signaling and defense/stress-response pathways in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nitratos/farmacología , Oryza/genética , Aminoácidos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Nitrógeno/metabolismo , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Plant J ; 91(1): 145-157, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28346710

RESUMEN

Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiamina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tiamina Pirofosfato/metabolismo
8.
Photosynth Res ; 127(2): 151-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26008795

RESUMEN

Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.


Asunto(s)
Arabidopsis/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes Mitocondriales , Plantones/genética , Regulación hacia Arriba/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Secuencia de Bases , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Intrones/genética , Lincomicina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Fotosíntesis/efectos de los fármacos , Piridazinas/farmacología , Edición de ARN/genética , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/efectos de los fármacos , Plantones/ultraestructura , Regulación hacia Arriba/efectos de los fármacos
9.
Plant Signal Behav ; 10(10): e1071002, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26237004

RESUMEN

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the plant cell. Thus, perturbation of mitochondrial structure and function will affect plant growth and development. Arabidopsis slow growth3 (slo3) is defective in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. Analysis of slo3 mitochondrial RNA metabolism revealed that the splicing of nad7 intron 2 is impaired, which leads to a dramatic reduction in complex I activity. So the SLO3 PPR protein is a splicing factor that is required for the removal of nad7 intron 2 in Arabidopsis. The slo3 mutant plants have obvious phenotypes with severe growth retardation and delayed development. The size of root apical meristem (RAM) is reduced and the production of meristem cells is decreased in slo3. Furthermore, the rosette leaves of slo3 are curled or crinkled, which may be derived from uneven growth of the leaf surface. The underlying mechanisms by which dysfunctional mitochondria affect these growth and developmental phenotypes have yet to be established. Nonetheless, plant hormone auxin is known to play an important role in orchestrating the development of RAM and leaf shape. It is possible that dysfunctional mitochondria may interact with auxin signaling pathways to regulate the boundary of RAM and the cell division arrest front during leaf growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Puntos de Control del Ciclo Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Intrones , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Proteínas Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Empalme del ARN , Factores de Empalme de ARN , ARN de Planta/metabolismo , Plantones , Transducción de Señal
10.
Plant Physiol ; 168(2): 490-501, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25888618

RESUMEN

Mitochondria play an important role in maintaining metabolic and energy homeostasis in the cell. In plants, impairment in mitochondrial functions usually has detrimental effects on growth and development. To study genes that are important for plant growth, we have isolated a collection of slow growth (slo) mutants in Arabidopsis (Arabidopsis thaliana). One of the slo mutants, slo3, has a significant reduction in mitochondrial complex I activity. The slo3 mutant has a four-nucleotide deletion in At3g61360 that encodes a pentatricopeptide repeat (PPR) protein. The SLO3 protein contains nine classic PPR domains belonging to the P subfamily. The small deletion in the slo3 mutant changes the reading frame and creates a premature stop codon in the first PPR domain. We demonstrated that the SLO3-GFP is localized to the mitochondrion. Further analysis of mitochondrial RNA metabolism revealed that the slo3 mutant was defective in splicing of NADH dehydrogenase subunit7 (nad7) intron 2. This specific splicing defect led to a dramatic reduction in complex I activity in the mutant as revealed by blue native gel analysis. Complementation of slo3 by 35S:SLO3 or 35S:SLO3-GFP restored the splicing of nad7 intron 2, the complex I activity, and the growth defects of the mutant. Together, these results indicate that the SLO3 PPR protein is a splicing factor of nad7 intron 2 in Arabidopsis mitochondria.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Intrones/genética , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , NADH Deshidrogenasa/genética , Empalme del ARN/genética , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proliferación Celular , ADN Complementario/genética , Complejo I de Transporte de Electrón/metabolismo , Genes de Plantas , Prueba de Complementación Genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación/genética , NADH Deshidrogenasa/metabolismo , Fenotipo , Raíces de Plantas , Transporte de Proteínas , Edición de ARN , Factores de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Plantones/metabolismo
11.
Plant Signal Behav ; 10(2): e988072, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25723575

RESUMEN

4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis.


Asunto(s)
Secuencia Conservada , Oxígeno/metabolismo , Fotosíntesis , Plantas/enzimología , Secuencia de Aminoácidos , Eritritol , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
12.
Plant Physiol ; 166(1): 57-69, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25037211

RESUMEN

The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia Conservada , Cianobacterias/enzimología , Difosfatos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Silenciador del Gen , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN , Homología Estructural de Proteína , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...