Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Vet Res ; 19(1): 93, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488563

RESUMEN

BACKGROUND: Cranial cruciate ligament (CCL) disease is one of the most common causes of lameness in dogs. The extracapsular stabilization (ECS) utilizing bone anchors and monofilament nylon leader was an alternative treatment for CCL-deficient (CCLD) dogs. However, the biomechanical response of the canine stifle to such a surgical repair strategy in conjunction with the use of recently reported quasi-isometric anchoring points remains unclear. The objectives of the study were to evaluate the mobility and stability of CCL-intact, CCLD, and CCLD stifles repaired with ECS at two different pairs of quasi-isometric points (quasi-IPs). METHODS: Twelve stifle specimens from 7 dogs underwent mobility and stability tests under 4 different conditions, namely, CCL-intact, CCLD, and ECS-repaired at 2 different pairs of quasi-IPs (referred to as ECS-IP1 and ECS-IP2). The mobility tests evaluated 6 degrees-of-freedom stifle kinematics during flexion and extension. The stability tests involved cranial drawer and tibial internal rotation (IR) tests at various stifle opening angles and quantifying the cranial tibial translation (CTT) and tibial IR angles under constantly applied loadings. RESULTS: The ECS repaired at quasi-IPs was shown to restore cranial instability of the stifles with averaged CTT magnitudes < 1.4 mm. During the tibial IR test, the ECS treatments resulted in significantly less tibial IR compared to those in intact CCL stifles. The mobility tests showed similar results. CONCLUSION: The 2 chosen pairs of quasi-IPs were shown to effectively correct the excessive CTT caused by CCLD stifles, whereas the excessive tibial external rotation in comparison to those of intact stifles should be considered for its subsequent influence on joint alignment and the contact pressure applied to the stifle joint.


Asunto(s)
Ligamento Cruzado Anterior , Rodilla de Cuadrúpedos , Perros , Animales , Marcha , Cráneo , Tibia
2.
BMC Vet Res ; 16(1): 105, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245381

RESUMEN

BACKGROUND: Skin marker-based three-dimensional kinematic gait analysis were commonly used to assess the functional performance and movement biomechanics of the pelvic limb in dogs. Unfortunately, soft tissue artefact would compromise the accuracy of the reproduced pelvic limb kinematics. Multibody kinematics optimization framework was often employed to compensate the soft tissue artefact for a more accurate description of human joint kinematics, but its performance on the determination of canine pelvic limb skeletal kinematics has never been evaluated. This study aimed to evaluate a multibody kinematics optimization framework used for the determination of canine pelvic limb kinematics during gait by comparing its results to those obtained using computed tomography model-based fluoroscopy analysis. RESULTS: Eight clinically normal dogs were enrolled in the study. Fluoroscopy videos of the stifle joint and skin marker trajectories were acquired when the dogs walked on a treadmill. The pelvic limb kinematics were reconstructed through marker-based multibody kinematics optimization and single-body optimization. The reference kinematics data were derived via a model-based fluoroscopy analysis. The use of multibody kinematics optimization yielded a significantly more accurate estimation of flexion/extension of the hip and stifle joints than the use of single-body optimization. The accuracy of the joint model parameters and the weightings to individual markers both influenced the soft tissue artefact compensation capability. CONCLUSIONS: Multibody kinematics optimization designated for soft tissue artefact compensation was established and evaluated for its performance on canine gait analysis, which provided a further step in more accurately describing sagittal plane kinematics of the hip and stifle joints.


Asunto(s)
Perros/fisiología , Análisis de la Marcha/veterinaria , Extremidad Inferior/fisiología , Animales , Artefactos , Fenómenos Biomecánicos , Fluoroscopía/veterinaria , Análisis de la Marcha/métodos , Articulación de la Cadera/fisiología , Extremidad Inferior/diagnóstico por imagen , Rodilla de Cuadrúpedos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...