Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(10): 4492-4500, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38348738

RESUMEN

As important building blocks in natural products and organic synthesis, thioethers have a wide range of potential applications. Herein, polyoxometalate-based ionic liquids (POM-ILs-SO3H) derived from N-alkyl imidazole were synthesized and used for the first time for the thiolation of alcohols to construct C-S bonds in a series of benzyl thioethers. This type of POM-ILs-SO3H catalyst exhibited high catalytic activity, providing up to 98% yield of thioether within 1 h at 70 °C. The alkyl chain length of the imidazole had a certain effect on the solubility of the POM-ILs-SO3H catalysts in the reaction solvent, and then affected their catalytic activity. The catalytic system had a wide substrate scope and was suitable for the reaction of tertiary and secondary benzyl alcohols with thiophenols or cycloalkyl thiols. In particular, [PIMPS]3PW12O40 (PIM = 1-propylimidazole, PS = propane sulfonate) as a reversible phase transformation-type catalyst, combining the advantages of homogeneous and heterogeneous catalysts, exhibited high activity and good recyclability with only a slight decrease in the yield after five runs. Additionally, a carbocation mechanism was proposed for the thiolation reaction of alcohols.

2.
Angew Chem Int Ed Engl ; 63(11): e202320036, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38191990

RESUMEN

The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).

3.
Dalton Trans ; 52(36): 12582-12596, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37646095

RESUMEN

Polyoxovanadates (POVs) have received widespread attention in catalytic applications due to their various structures and remarkable redox properties. By introducing a second transition metal, POV-based inorganic-organic hybrid (POVH) catalysts show increasing stability and more catalytic active sites compared with pure POVs. In this perspective article, POVH materials as oxidative catalysts have been classified into two main categories according to the interactions between transition metal-complex units and POV clusters: (i) hybrids with metal-organic units act as isolated cations and (ii) hybrids with an organic ligand coordinate to the second transition metal, which is further linked to a POV cluster via oxygen bridges directly or indirectly to give zero-, one-, two- or three-dimensional supramolecular structures. The oxidative conversion of organic compounds, including thiophene derivatives, thioethers, alkanes, alcohols, and alkenes, and oxidative detoxification of a sulfur mustard simulant or degradation of lignin, along with the oxidative photo/electrocatalytic transformation of organic compounds catalyzed by POVH materials, are discussed in detail. Furthermore, the challenges and prospects toward the development of POVH catalysts are explored briefly from our perspectives.

4.
Inorg Chem ; 62(34): 13824-13831, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37585392

RESUMEN

Ongoing research on V-containing polyoxoniobates (PONbs) is driven by their diverse structures and potential applications. Although Lindqvist-type {Nb6O19} is a widely used building block in PONbs, vanadoniobates based on {Nb6O19} and/or its derivatives are still very limited. Herein, a discrete vanadoniobate, LiNa14K11[Li2 ⊂ VIV8Nb32O110]·45H2O (1), has been synthesized by a hydrothermal method, which shows a rhombus-like tetrameric structure composed of two {V2O6(Nb6O19)} and two {Li ⊂ V2O8(Nb5O14)2} subunits derived from {Nb6O19}. Notably, the {Li ⊂ V2O8(Nb5O14)2} subunit has an interesting pseudo-sandwich-type structure, where a {LiV2O8} belt is coordinated by two monolacunary {Nb5O14} molecules and the central site of the cluster is occupied by Li+. Considering that 1 has both basic hexaniobates and redox active V centers, 1 was used as a noble metal-free electrocatalyst for the selective oxidation of benzyl alcohol to benzaldehyde, achieving complete conversion of benzyl alcohol with 94% selectivity for benzaldehyde in 3 h under ambient conditions without using any alkaline additives. Moreover, the catalytic performance of 1 remained largely unchanged after four cycles.

5.
Small ; 19(45): e2302556, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37469219

RESUMEN

Hierarchically structured bimetal hydroxides are promising for electrocatalytic oxygen evolution reaction (OER), yet synthetically challenging. Here, the nanoconfined hydrolysis of a hitherto unknown CoFe-bimetal-organic compound (b-MOC) is reported for the controllable synthesis of highly OER active nanostructures of CoFe layered double hydroxide (LDH). The nanoporous structures trigger the nanoconfined hydrolysis in the sacrificial b-MOC template, producing CoFe LDH core-shell octahedrons, nanoporous octahedrons, and hollow nanocages with abundant under-coordinated metal sites. The hollow nanocages of CoFe LDH demonstrate a remarkable turnover frequency (TOF) of 0.0505 s-1 for OER catalysis at an overpotential of 300 mV. It is durable in up to 50 h of electrolysis at step current densities of 10-100 mA cm-2 . Ex situ and in situ X-ray absorption spectroscopic analysis combined with theoretical calculations suggests that under-coordinated Co cations can bind with deprotonated Fe-OH motifs to form OER active Fe-O-Co dimmers in the electrochemical oxidation process, thereby contributing to the good catalytic activity. This work presents an efficient strategy for the synthesis of highly under-coordinated bimetal hydroxide nanostructures. The mechanistic understanding underscores the power of maximizing the amount of bimetal-dimer sites for efficient OER catalysis.

6.
Dalton Trans ; 52(20): 6677-6684, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37128742

RESUMEN

Pickering emulsions provide an efficient platform for interfacial catalysis, but product separation and catalyst recycling rely on time- and energy-consuming centrifugation or filtration. Herein, three hexaniobate-based ionic liquids, [CnMIM]Nb6 (n = 12, 14 and 16), have been successfully synthesized by self-assembly of hexaniobate (Nb6) with long alkyl chain-modified imidazole cations (CnMIM). Interestingly, the surface wettability of [C16MIM]Nb6 can be regulated by redox reactions, and the rapid switch between emulsification and demulsification can be achieved by alternately adding oxidant (H2O2) and reductant (Na2SO3) agents. Furthermore, studies suggest that the redox-responsive behavior is related to the reversible transformation between [C16MIM]Nb6 and peroxohexaniobate [C16MIM]Nb6-O2, which leads to the rearrangement of hydrophobic long chains on imidazole cations around hydrophilic Nb6. Moreover, [C16MIM]Nb6 can effectively catalyze oxidative desulfurization (conversion > 99%), and the separation of clean model oil and the recycling of the interfacial catalyst were realized in a facile route.

7.
Chemistry ; 29(23): e202203903, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36639354

RESUMEN

Electrocatalytic oxidation of organic molecules to value-added chemicals has attracted recent attention. Although a series of transition metal based electrocatalytic materials have been developed, the lack of precise structure information generates great challenges in understanding the catalytic mechanism at a molecular level. Herein, we present the synthesis and characterization of a molecular electrocatalyst, Na2 K6 H14 [(VO)6 (α-TeNb9 O33 )2 ] ⋅ 31H2 O ⋅ 2.5 C2 H8 N2 (abbreviated as V6 (TeNb9 )2 ), where a reduced {V6 } ring is sandwiched by two trivacant Keggin-type {α-TeNb9 O33 }. V6 (TeNb9 )2 as heterogeneous electrocatalyst can selectively convert 95 % of thioanisole to sulfoxide with the Faraday efficiency up to 98 %. Notably, the important role of the embedded {V6 } ring in the electrocatalytic oxidation was illustrated by comparing with {Nb6 } ring sandwiched catalyst, Na5 K7 H4 [(NbO)6 (α-TeNb9 O33 )2 ] ⋅ 17H2 O (abbreviated as Nb6 (TeNb9 )2 ). Mechanism studies reveal that during the electrocatalytic oxidation process water is the only oxygen source and a key intermediate PhCH3 S+ ⋅ is involved.

8.
Molecules ; 27(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35566213

RESUMEN

During the controllable synthesis of two vanadium-containing Keggin-type polyoxoniobates (PONbs), [Ni(en)2]5[PNb12O40(VO)5](OH)5·18H2O (1) and [Ni(en)3]5[PNb12O40(VO)2]∙17H2O (2, en = ethylenediamine) are realized by changing the vanadium source and hydrothermal temperature. Compounds 1 and 2 have been thoroughly characterized by single-crystal X-ray diffraction analysis, FT-IR spectra, X-ray photoelectron spectrum (XPS), powder X-ray diffraction (PXRD), etc. Compound 1 contains a penta-capped Keggin-type polyoxoniobate {PNb12O40(VO)5}, which is connected by adjacent [Ni(en)2]2+ units into a three-dimensional (3D) organic-inorganic framework, representing the first nickel complexes connected vanadoniobate-based 3D material. Compound 2 is a discrete di-capped Keggin-type polyoxoniobate {PNb12O40(VO)2} with [Ni(en)3]2+ units as counter cations. Compounds 1 and 2 have poor solubility in common solvents and can keep stable in the pH range of 4 to 14. Notably, both 1 and 2 as electrode materials are active for the selective oxidation of benzyl alcohol to benzaldehyde. Under ambient conditions without adding an alkaline additive, compound 1 as a noble metal free electrocatalyst can achieve 92% conversion of benzyl alcohol, giving a Faraday efficiency of 93%; comparatively, 2 converted 79% of the substrate with a Faraday efficiency of 84%. The control experiments indicate that both the alkaline polyoxoniobate cluster and the capped vanadium atoms play an important role during the electrocatalytic oxidation process.

9.
Inorg Chem ; 61(7): 3050-3057, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35124959

RESUMEN

Two new U(VI)-containing silicotungstates with similar sandwiched polyanions but different space structures, two-dimensional Na10.5H3.5(H2O)36[Na(UO2)(α-SiW9O34)]2·2.5H2O (1) and three-dimensional Na14(H2O)36[Na(UO2)(α-SiW9O34)]2·4H2O (2), have been synthesized by the reactions of UO2(OAc)2 and Na10[α-SiW9O34]·18H2O in aqueous solution at different pH values. Structure analyses demonstrated that different reaction conditions may provide different self-assembly conditions and result in the different coordination environments of Na(I)-H2O clusters with different disorders, which are the keys to the differences between 1 and 2. Compound 2 was demonstrated to show excellent catalytic activity for the synthesis of 3H-benzo[b][1,4]diazepines and pyrazoles via the intermolecular cyclization reactions, and the yields of the desired products reached 99%. This work illustrates the catalytic properties for U(VI)-containing POMs.

10.
Dalton Trans ; 50(29): 10082-10091, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34213516

RESUMEN

By introducing 4-amino-1,2,4-triazole (4-NH2-trz), three new polyoxovanadate-based metal-organic frameworks (PMOFs) [Ni3(4-NH2-trz)6][V6O18]·3H2O (1), [Co3(4-NH2-trz)6][V6O18]·3H2O (2) and [Cu3OH(4-NH2-trz)3H2O][VO3]5·H2O (3) have been synthesized and thoroughly characterized by single-crystal X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), infrared spectroscopy (FT-IR), thermogravimetric (TG) analysis and elemental analysis (EA). Among them, PMOFs 1 and 2 had similar structures containing [V6O18]6- clusters; however, PMOF 3 was isolated as a structure containing a [VO3]55- cluster when the amount of the 4-NH2-trz ligand was reduced to half with the other synthesis conditions being the same as those of PMOFs 1 and 2 except for the transition-metal chlorides. Furthermore, the negative charges of polyoxovanadate [V6O18]6- and [VO3]55- anions were balanced by trinuclear complex cations [Ni3(4-NH2-trz)6]6- for 1, [Co3(4-NH2-trz)6]6- for 2 and [Cu3OH(4-NH2-trz)3H2O]5- for 3, respectively. PMOFs 1-3 were further used as heterogeneous catalysts in the Knoevenagel condensation under solvent-free conditions and showed high catalytic activity. PMOF 1 showed moderate catalytic activities in the oxidation of various aromatic alcohols using H2O2 as an oxidant. Moreover, PMOF 1 could be reused at least three times without losing its activity.

11.
Chem Commun (Camb) ; 57(60): 7430-7433, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34231578

RESUMEN

Ethylbenzene (EB) oxidation is an important transformation in the chemical industry. Herein, PMo10V2@CTF, a noble metal free electrocatalyst, was used to promote the oxidative upgrading of EB. Under ambient conditions, 65% of EB was converted to three value-added products using water as the oxygen source yielding a total Faraday efficiency of 90.4%. This excellent performance is ascribed to the homogeneous dispersion of PMo10V2 and its dual role in the electrocatalytic process.

12.
Dalton Trans ; 50(28): 9796-9803, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34180935

RESUMEN

Keggin-type polyoxometalates (POMs) were immobilized on poly(diallyldimethylammonium chloride) (PDDA) functionalized reduced graphene oxide (rGO) by a facile and broad-spectrum hydrothermal method. The prepared POMs@PDDA-rGO composites (POM = H3PMo12O40, H3PW12O40, H5PMo10V2O40) have been thoroughly characterized using a series of techniques. The three composites can catalyze the oxidative decontamination of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES) in the order of PMo12@PDDA-rGO > PMo10V2@PDDA-rGO > PW12@PDDA-rGO. Notably, under ambient conditions PMo12@PDDA-rGO can convert 99% of CEES within 30 min in the presence of nearly stoichiometric aqueous H2O2 (3 wt%) and its catalytic activity is significantly higher than that of homogeneous H3PMo12O40. XPS spectral analysis and control experiments indicate that the Mo center of POM is reduced from +6 to +5 during the hydrothermal process, and the excellent catalytic performance is related to the reduction of Mo. Moreover, the PMo12@PDDA-rGO composite is stable during the decontamination process and it can be used for at least five cycles without loss of activity.

13.
Inorg Chem ; 60(11): 7785-7793, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33755456

RESUMEN

Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.


Asunto(s)
Lactonas/química , Ácidos Levulínicos/química , Ácidos de Lewis/química , Estructuras Metalorgánicas/química , Compuestos de Tungsteno/química , Circonio/química , 2-Propanol/química , Biomasa , Estructuras Metalorgánicas/síntesis química , Modelos Moleculares , Estructura Molecular
14.
Inorg Chem ; 60(6): 3909-3916, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593056

RESUMEN

Biomass as a sustainable and abundant carbon source has attracted considerable attention as a potential alternative to petroleum resources. The selective oxidation of 5-hydroxymethylfurfural (HMF), a versatile platform molecule, to value-added 2,5-diformylfuran (DFF) provides an efficient pathway for biomass valorization. Herein, three discrete imidazole-functionalized polyoxometalates (POMs), HPMo8VVI4O40(VVO)2[(VIVO)(IM)4]2·nH2O·(IM)m (IM = 1-methylimidazole, n = 4, m = 8 for 1; IM = 1-ethylimidazole, n = 4, m = 9 for 2; IM = 1-propylimidazole, n = 0, m = 4 for 3), have been successfully synthesized by a facile solvothermal method and thoroughly characterized by routine techniques. Compounds 1-3 contain a bi-capped pseudo-Keggin {HPMo8V4O40(VO)2} and two imidazole-functionalized {(VO)(IM)4} groups, which, to our knowledge, represent the first examples of organic-functionalized Mo-V clusters. Compounds 1-3 as heterogeneous catalysts can effectively promote the transformation of HMF to DFF using atmospheric O2 as oxidant. Under minimally optimized conditions, 95% of HMF was converted by 1 with 95% selectivity for DFF and its catalytic activity was basically maintained after five cycles. Moreover, the important roles of the bi-capped pseudo-Keggin cluster and the functionalized V groups in the selective oxidation of HMF have been explored. According to experimental and spectroscopic results, a three-step oxidation mechanism of HMF to DFF has been proposed.

15.
Front Chem ; 8: 598961, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330390

RESUMEN

Lanthanide (Ln)-containing polyoxometalates (POMs) have attracted particular attention owing to their structural diversity and potential applications in luminescence, magnetism, and catalysis. Herein three types of Ln-containing tungstotellurates(VI) (Ln = Dy3+, Ho3+, Er3+, Tm3+, Yb3+, and Lu3+), dimeric (DMAH) n [H22-n {Ln(H2O)3[TeW17O61]}2]·mH2O (abbreviated as {Ln2Te2W34}; DMAH+ = dimethylammonium), mono-substituted (DMAH)7Na2{H2Ln(H2O)4[TeW17O61]}·mH2O (abbreviated as {LnTeW17}), and three-dimensional (3D) inorganic frameworks (DMAH) n {H3-n Ln(H2O)4[TeW6O24]}·mH2O (abbreviated as {LnTeW6}), have been synthesized by using simple metal salts and characterized by single-crystal X-ray diffraction and other routine techniques. Interestingly, the assembly of these POMs is pH dependent. Using the same starting materials, {Ln2Te2W34} were obtained at pH 1.7, where two Dawson-like monovacant [TeW17O61]14- are linked by two Ln3+ ions; mono-substituted Dawson-like {LnTeW17} were isolated at pH 1.9, and 3D inorganic framework {LnTeW6} based on Anderson-type [TeW6O24]6- were formed at pH 2.3. It was also found that the assembly of Ln-containing POMs depends on the type of Ln3+ ions. The three types of POMs can be prepared by using Ln3+ ions with a relatively smaller ionic radius, such as Tb3+-Lu3+, while the use of Ln3+ ions (La3+-Eu3+) results in the formation of precipitation or {TeW18O62} clusters. Furthermore, three {LnTeW6} (Ln = Tb3+, Er3+, Lu3+) were used as Lewis acid catalysts for the cyanosilylation of benzaldehydes, and their catalytic activity decreases with the decrease of Ln3+ ionic radius, giving the order: {TbTeW6} > {ErTeW6} > {LuTeW6}. Notably, {TbTeW6} is stable to leaching and can be reused for five cycles without a significant loss of its activity.

16.
Dalton Trans ; 49(40): 14148-14157, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33021293

RESUMEN

By rationally controlling hydrothermal conditions, three new inorganic-organic hybrid polyoxovanadates (POVs) [Ni2(1-vIM)7H2O][V4O12]·H2O (1), [Cu2(1-vIM)8][V4O12]·H2O (2) and [Co(1-vIM)H2O][VO3]2 (3) (1-vIM = 1-vinylimidazole) have been synthesized and thoroughly characterized by single X-ray diffraction (SXRD), powder X-ray diffraction (PXRD), infrared spectroscopy (FT-IR), and elemental analyses (EA). Interestingly, complexes 1 and 2 have similar structures including [V4O12]4- clusters; complex 3, however, was isolated as a structure by including the [VO3]22- cluster under a different synthetic condition compared with those of 1 and 2. Both complexes 1 and 2 display an interesting 3D supramolecular structure, and complex 3 shows a 2D two parallel networks supramolecular structure linked by a [Co2O2] unit due to the different coordination environments of the central metals. Three inorganic-organic hybrid POVs as heterogeneous catalysts are active in the selective oxidation of sulfides to produce sulfoxides or sulfones with high conversion and high selectivity (up to 99.5% for sulfoxides and 98.5% for sulfones respectively catalyzed by 1). Complex 1 is also used as catalyst in the oxidative CEES (2-chloroethyl ethyl sulfide, a sulfur mustard simulant) abatement with high activity and selectivity toward the corresponding sulfoxide. Moreover, complex 1 can be reused at least three times in sulfoxidation reactions without losing its activity.

17.
Chem Commun (Camb) ; 56(90): 13967-13970, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33057482

RESUMEN

We report the synthesis and characterization of two discrete vanadoniobates, H6Cs4Na5K7[V5Nb23O80]·28H2O (1) and H6Cs4Na5K8[V6Nb23O81]·34H2O (2), based on a brand new {Nb23} and a 5/6-nuclear polyoxovanadate cap. The two vanadoniobates as heterogeneous catalysts can effectively promote the oxidative decontamination of sulfur mustard simulants.

18.
Nanoscale ; 12(31): 16586-16595, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32749430

RESUMEN

Although some catalytic hollow nanoreactors have been fabricated in the past, the encapsulated active species focus on metal nanoparticles, and a method for polyoxometalate (POM)-containing hollow nanoreactors has seldom been developed. Herein, we report a synthetic strategy towards POM-based amphiphilic nanoreactors, where the hollow mesoporous double-shelled SiO2@C nanospheres were used to encapsulate Keggin-type H3PMo12O40 (PMo12). The outer hydrophobic carbon shell was beneficial for the enrichment of the organic substrate around the nanoreactor and simultaneously prevented the deposition of POMs on the outer surface of the nanoreactor. The inner hydrophilic silica cavity was modified by two types of organosilanes, which not only created an amphiphilic cavity environment but also acted as an anchor to mobilize PMo12. As the POM nanoreactor had the hydrophilic@hydrophobic SiO2@C shell and an amphiphilic cavity, both dibenzothiophene (DBT) and H2O2 could smoothly diffuse into the nanosized cavity, where the DBT was effectively oxidized (conversion: >99%) by the immobilized PMo12 under mild conditions. Importantly, the control experiments indicated that the confined effect of nanoreactor, amphiphilic SiO2@C double-shell, unique cavity environment, and mesoporous channels accounted for an excellent catalytic performance. Moreover, the nanoreactor was robust and could be reused for five cycles without loss of activity.

19.
Inorg Chem ; 59(14): 9756-9764, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32628500

RESUMEN

Recently, the hydrolysis of nerve agents by Lewis acid catalysts has attracted considerable attention. The development of molecular catalysts, such as polyoxometalates (POMs) with Lewis acidic sites, is helpful to improve degradation efficiency and understand the catalytic mechanism at a molecular level. Herein, two novel Keggin-type POMs, namely, mono-Sc-substituted K4[Sc(H2O)PW11O39]·22H2O·2(CH3COOK) (1) and di-Sc-substituted Na7[Sc2(CH3COO)2PW10O38]·10H2O·2CH3COONa (2), have been successfully synthesized and thoroughly characterized by routine techniques. To our knowledge, 1 and 2 represent the first example of discrete Sc-substituted Keggin clusters. Compared with the reported Sc-containing POMs, 1 and 2 exhibit relatively good solubility and stability in aqueous solution, as evidenced by 31P nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. The two Sc-substituted POMs can effectively catalyze the hydrolytic decontamination of dimethyl 4-nitrophenyl phosphate (DMNP), a nerve agent simulant, at near-neutral pH. Notably, the catalytic performance of 2 (conversion: 97%) is much better than that of 1 (conversion: 28%). It is found that the different coordination environment of Sc is the key factor to impact their activity. Mechanistic studies including the control experiments and spectroscopy analysis (13C nuclear magnetic resonance spectroscopy and electrospray ionization mass spectrometry) show that under the turnover conditions the coordinated acetate dissociates from 2 and the exposed coordinatively unsaturated Sc center is more active than the water-coordinated Sc in 1 for binding with DMNP.

20.
Org Biomol Chem ; 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32469354

RESUMEN

A general and efficient strategy for the synthesis of protected α-amino acids is reported. The method uses malonate derivatives as the starting materials and Cs2CO3 as a base at 60 degrees, giving α-amino acid derivatives in moderate yields by releasing CO2. This methodology shows broad substrate scope (primary and secondary acids), excellent functional group tolerance and high efficiency to give the desired products under mild reaction conditions. It also allows the construction of ß and γ-amino acids and other unnatural products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA