Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 937
1.
Int J Biol Macromol ; : 132481, 2024 May 17.
Article En | MEDLINE | ID: mdl-38763233

A burgeoning interest has recently focused on the development of nanomedicine to integrate noninvasive photothermal therapy (PTT) and chemodynamic therapy (CDT) for synergistic tumor treatments, owing to PTT's amplification effect on CDT. However, challenges emerge as hyperthermia often induces an unwarranted overexpression of cytoprotective heat shock proteins (HSPs), thereby curtailing PTT efficacy. Additionally, the nearly neutral tumor intracellular pH (pHi ≈ 7.2) that handicaps the Fenton reaction poses a leading limitation to CDT. Addressing these hurdles, we introduce EVP, a nanomedicine developed through the straightforward assembly of epigallocatechin gallate (EGCG), vanadium sulfate (VOSO4), and Pluronic F-127 (PF127). EVP comprehensively downregulates overexpressed HSPs (HSP 60, 70, 90) through the collaborative action of EGCG and vanadyl (VO2+). Moreover, the tumor intracellular pH-processed Fenton-like reaction by VO2+ ensures highly efficient hydroxyl radicals (OH) production in cytosols, overcoming the stringent acidity requirement for CDT. Additionally, the hyperthermia induced by PTT augments OH production, further enhancing CDT efficacy. In vitro and in vivo experiments validate EVP's excellent biocompatibility and potent tumor inhibition, highlighting its substantial potential in tumor therapy.

2.
Radiat Oncol ; 19(1): 56, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745333

BACKGROUND: Oncologic surgical resection is the standard of care for extremity and truncal soft tissue sarcoma (STS), often accompanied by the addition of pre- or postoperative radiation therapy (RT). Preoperative RT may decrease the risk of joint stiffness and fibrosis at the cost of higher rates of wound complications. Hypofractionated, preoperative RT has been shown to provide acceptable outcomes in prospective trials. Proton beam therapy (PBT) provides the means to decrease dose to surrounding organs at risk, such as the skin, bone, soft tissues, and adjacent joint(s), and has not yet been studied in patients with extremity and truncal sarcoma. METHODS: Our study titled "PROspective phase II trial of preoperative hypofractionated protoN therapy for extremity and Truncal soft tissue sarcOma (PRONTO)" is a non-randomized, prospective phase II trial evaluating the safety and efficacy of preoperative, hypofractionated PBT for patients with STS of the extremity and trunk planned for surgical resection. Adult patients with Eastern Cooperative Group Performance Status ≤ 2 with resectable extremity and truncal STS will be included, with the aim to accrue 40 patients. Treatment will consist of 30 Gy radiobiological equivalent of PBT in 5 fractions delivered every other day, followed by surgical resection 2-12 weeks later. The primary outcome is rate of major wound complications as defined according to the National Cancer Institute of Canada Sarcoma2 (NCIC-SR2) Multicenter Trial. Secondary objectives include rate of late grade ≥ 2 toxicity, local recurrence-free survival and distant metastasis-free survival at 1- and 2-years, functional outcomes, quality of life, and pathologic response. DISCUSSION: PRONTO represents the first trial evaluating the use of hypofractionated PBT for STS. We aim to prove the safety and efficacy of this approach and to compare our results to historical outcomes established by previous trials. Given the low number of proton centers and limited availability, the short course of PBT may provide the opportunity to treat patients who would otherwise be limited when treating with daily RT over several weeks. We hope that this trial will lead to increased referral patterns, offer benefits towards patient convenience and clinic workflow efficiency, and provide evidence supporting the use of PBT in this setting. TRIAL REGISTRATION: NCT05917301 (registered 23/6/2023).


Extremities , Proton Therapy , Radiation Dose Hypofractionation , Sarcoma , Humans , Proton Therapy/methods , Sarcoma/radiotherapy , Sarcoma/pathology , Prospective Studies , Adult , Female , Male , Soft Tissue Neoplasms/radiotherapy , Soft Tissue Neoplasms/pathology , Soft Tissue Neoplasms/surgery , Preoperative Care , Torso
3.
Mult Scler Relat Disord ; 87: 105639, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704876

BACKGROUND: Criteria for multiple sclerosis (MS) diagnosis rely upon clinical and paraclinical data that are supportive of MS in the absence of a better explanation. Patients referred for consideration of a MS diagnosis often undergo an extensive serologic workup including antinuclear antibody (ANA) testing, even when an individual already meets diagnostic criteria for MS. It is unclear whether ANA serostatus is associated with clinical outcomes in MS. The present study aims to determine if ANA seropositivity in those referred with concern for MS differs in those who meet 2017 revised McDonald criteria compared to those who did not receive a diagnosis of MS. Associations between ANA seropositivity and clinical or radiological phenotype of MS patients are also explored. METHODS: The cohort included people at least 18 years old, referred to our tertiary care MS center with concern for MS (regardless of prior diagnosis) who had an ANA test with known titer completed within one year of first evaluation. Electronic health record (EHR) charts were manually reviewed, and MRIs underwent blinded review by a radiologist with training in neuroradiology. Diagnosis of MS was determined by a neuroimmunologist and was based on 2017 revised McDonald Criteria. Results are reported as odds ratios from multivariable logistic regression analyses adjusted for age, sex at birth, race, smoking history, personal history of comorbid autoimmune conditions, and family history of autoimmunity. Within the MS cohort, similar analytical models were performed to assess association between ANA and clinical and radiological characteristics. RESULTS: A final cohort of 258 patients was analyzed (out of 542 referrals): 106 nonMS and 152 with MS. There was no association between MS (vs. nonMS) diagnosis and ANA status (ANA positive n = 74) in the multivariable models (OR 1.5, 95 % CI 0.82, 2.72, p = 0.20). Among those with MS, there was no association of ANA seropositivity with the odds of atypical brain MRI features, number of cardinal MRI areas involved, location of MRI lesions, or of having an atypical presentation of first demyelinating event. Black race (OR 2.8, 95 % CI 1.27, 6.26, p = 0.01) and family history of autoimmunity (OR 2.1, 95 % CI 1.09, 3.98, p = 0.03) were independently associated with increased odds of ANA positivity. Within the MS cohort analysis, progressive MS (PMS; vs relapsing-remitting MS), a covariate in the model, appeared to be at higher odds of being ANA positive (OR 3.6, 95 % CI 1.03, 13.05, p = 0.046) but only when assessing mean area of cardinal MS locations. CONCLUSIONS: While ANA testing does not appear to be useful in distinguishing MS from non-MS, it remains less clear as to whether it may be associated with differences in the clinical course of MS (relapsing-remitting vs progressive). Future studies should aim to systematically evaluate whether those who are ANA positive are more likely, in well-designed and representative prospective cohorts, to be diagnosed with or develop progressive MS. Whether a positive ANA early in MS is associated with increased risk over time of developing or diagnosing another systemic autoimmune disease would also be of interest.

4.
J Stomatol Oral Maxillofac Surg ; : 101860, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38565421

OBJECTIVE: The reconstruction of composite defects in the oral and maxillofacial region using vascularized fascial flaps, such as the fibular, iliac, and temporal fascial flaps, has gained increasing attention among surgeons. However, there remains uncertainty regarding the suitability of fascial flaps as transplants, as well as their healing processes and outcomes, due to their non-mucosal nature. This study aims to comprehensively assess the biological aspects of vascularized fascial flaps at clinical, histological, and genetic levels, with the goal of providing essential biological references for their clinical application. STUDY DESIGN: This study enrolled three patients who underwent reconstruction of combined oral mucosa-mandibular defects using fibular vascularized fascial flaps between 2020 and 2023. Data regarding changes in the appearance of the fascial flaps, bulk-RNA sequencing, and histological slices of initial fascia, initial gingiva, and transformed fascia were collected and analyzed. RESULTS: Within three months, the fascial flaps exhibited rapid epithelial coverage and displayed distinct characteristics resembling mucosa. High-throughput RNA sequencing analyses and histological slices revealed that the transformed fascia exhibited tissue structures similar to mucosa and demonstrated unique advantages in promoting blood vessel formation and reducing scarring through the high-level expression of relevant genes. CONCLUSION: These findings emphasize the potential and feasibility of utilizing vascularized fascial flaps for oral mucosa reconstruction, establishing their unique advantage as transplant materials, and providing significant biological information and references for their selection and clinical application.

5.
Transl Cancer Res ; 13(3): 1252-1267, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38617505

Background: Breast cancer (BC) is the most prevalent cancer type and is the principal cause of cancer-related death in women. Anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) immunotherapy has shown promising effects in metastatic triple-negative breast cancer (TNBC), but the potential factors affecting its efficacy have not been elucidated. Immune-related long noncoding RNAs (irlncRNAs) have been reported to be involved in immune escape to influence the carcinogenic process through the PD-1/PD-L1 signaling pathway. Therefore, exploring the potential regulatory mechanism of irlncRNAs in PD-1/PD-L1 immunotherapy in TNBC is of great importance. Methods: We retrieved transcriptome profiling data from The Cancer Genome Atlas (TCGA) and identified differentially expressed irlncRNA (DEirlncRNA) pairs. Least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct a risk assessment model. Results: Receiver operating characteristic (ROC) curve analysis indicated that the risk model may serve as a potential prediction tool in TNBC patients. Clinical stage and risk score were proved to be independent prognostic predictors by univariate and multivariate Cox regression analyses. Subsequently, we investigated the correlation between the risk model and tumor-infiltrating immune cells and immune checkpoints. Finally, we identified USP30-AS1 through the StarBase and Multi Experiment Matrix (MEM) databases, predicted the potential target genes of USP30-AS1, and then discovered that these target genes were closely associated with immune responses. Conclusions: Our study constructed a risk assessment model by irlncRNA pairs regardless of expression levels, which contributed to predicting the efficacy of immunotherapy in TNBC. Furthermore, the lncRNA USP30-AS1 in the model was positively correlated with the expression of PD-L1 and provided a potential therapeutic target for TNBC.

6.
BMC Cancer ; 24(1): 501, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641773

BACKGROUND: For patients with locally advanced rectal cancer (LARC), total neoadjuvant therapy (TNT), namely, intensifying preoperative treatment through the integration of radiotherapy and systemic chemotherapy before surgery, was commonly recommended as the standard treatment. However, the risk of distant metastasis at 3 years remained higher than 20%, and the complete response (CR) rate was less than 30%. Several clinical trials had suggested a higher complete response rate when combining single-agent immunotherapy with short-course radiotherapy (SCRT). The CheckMate 142 study had shown encouraging outcomes of dual immunotherapy and seemingly comparable toxicity for CRC compared with single-agent immunotherapy in historical results. Therefore, dual immunotherapy might be more feasible in conjunction with the TNT paradigm of SCRT. We performed a phase II study to investigate whether the addition of a dual immune checkpoint inhibitor bispecific antibody, Cadonilimab, to SCRT combined with chemotherapy might further increase the clinical benefit and prognosis for LARC patients. METHODS: This single-arm, multicenter, prospective, phase II study included patients with pathologically confirmed cT3-T4N0 or cT2-4N + rectal adenocarcinoma with an ECOG performance score of 0 or 1. Bispecific antibody immunotherapy was added to SCRT combined with chemotherapy. Patients enrolled would be treated with SCRT (25 Gy in five fractions over 1 week) for the pelvic cavity, followed by 4 cycles of CAPOX or 6 cycles of mFOLFOX and Cadonilimab. The primary endpoint was the CR rate, which was the ratio of the pathological CR rate plus the clinical CR rate. The secondary endpoints included local-regional control, distant metastasis, disease-free survival, overall survival, toxicity profile, quality of life and functional outcome of the rectum. To detect an increase in the complete remission rate from 21.8% to 40% with 80% power, 50 patients were needed. DISCUSSION: This study would provide evidence on the efficacy and safety of SCRT plus bispecific antibody immunotherapy combined with chemotherapy as neoadjuvant therapy for patients with LARC, which might be used as a candidate potential therapy in the future. TRIAL REGISTRATION: This phase II trial was prospectively registered at ClinicalTrials.gov, under the identifier NCT05794750.


Rectal Neoplasms , Rectum , Humans , Rectum/pathology , Prospective Studies , Quality of Life , Rectal Neoplasms/drug therapy , Rectal Neoplasms/radiotherapy , Neoadjuvant Therapy/methods , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy/methods , Neoplasm Staging , Clinical Trials, Phase II as Topic , Multicenter Studies as Topic
7.
Materials (Basel) ; 17(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612186

Fe-~30 at.%Pd is a ferromagnetic shape memory alloy (SMA) with a reversible thermoelastic fcc-fct phase transformation. The advantage of adding a small amount of Indium to Fe-Pd SMAs is, among other things, the upward shift of the transformation temperatures, which allows us to maintain the material in the martensitic state (fct structure) at room temperature. In this work, we study the microstructure and the magnetic properties of nominally Fe67.6-Pd32-In0.4 (at.%) melt-spun ribbons. Energy-dispersive spectroscopy analysis showed a certain level of non-uniformity of Indium distribution in the as-spun ribbon. However, the attempt to homogenize the ribbon by annealing at 1273 K for 120 h resulted in an unfavoured structural change to bct martensite. Magneto strains induced by a 9 kOe magnetic field reached over 400 ppm for certain field orientations, which is around four times more than the magneto strains of near-binary Fe-Pd shape memory alloys.

8.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38564478

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Breast Neoplasms , Lung Neoplasms , Animals , Mice , Humans , Female , Breast Neoplasms/drug therapy , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Disease Models, Animal , Lung Neoplasms/drug therapy , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Iron , Starch , Magnetic Iron Oxide Nanoparticles
9.
Orphanet J Rare Dis ; 19(1): 179, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685110

Mucopolysaccharidoses (MPSs) are caused by a deficiency in the enzymes needed to degrade glycosaminoglycans (GAGs) in the lysosome. The storage of GAGs leads to the involvement of several systems and even to the death of the patient. In recent years, an increasing number of therapies have increased the treatment options available to patients. Early treatment is beneficial in improving the prognosis, but children with MPSs are often delayed in their diagnosis. Therefore, there is an urgent need to develop a method for early screening and diagnosis of the disease. Tandem mass spectrometry (MS/MS) is an analytical method that can detect multiple substrates or enzymes simultaneously. GAGs are reliable markers of MPSs. MS/MS can be used to screen children at an early stage of the disease, to improve prognosis by treating them before symptoms appear, to evaluate the effectiveness of treatment, and for metabolomic analysis or to find suitable biomarkers. In the future, MS/MS could be used to further identify suitable biomarkers for MPSs for early diagnosis and to detect efficacy.


Mucopolysaccharidoses , Tandem Mass Spectrometry , Humans , Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/metabolism , Tandem Mass Spectrometry/methods , Biomarkers/metabolism , Glycosaminoglycans/metabolism
10.
Water Res ; 255: 121477, 2024 May 15.
Article En | MEDLINE | ID: mdl-38520778

Iodinated X-ray contrast media (ICM) are ubiquitously present in water sources and challenging to eliminate using conventional processes, posing a significant risk to aquatic ecosystems. Ultraviolet light-emitting diodes (UV-LED) emerge as a promising technology for transforming micropollutants in water, boasting advantages such as diverse wavelengths, elimination of chemical additives, and no induction of microorganisms' resistance to disinfectants. The research reveals that iohexol (IOX) degradation escalates as UV wavelength decreases, attributed to enhanced photon utilization efficiency. Pseudo-first-order rate constants (kobs) were determined as 3.70, 2.60, 1.31 and 0.65 cm2 J-1 at UV-LED wavelengths of 255, 265, 275 and 285 nm, respectively. The optical properties of dissolved organic matter (DOM) and anions undeniably influence the UV-LED photolysis process through photon competition and the generation of reactive substances. The influence of Cl- on IOX degradation was insignificant at UV-LED 255, but it promoted IOX degradation at 265, 275 and 285 nm. IOX degradation was accelerated by ClO2-, NO3-and HA due to the formation of various reactive species. In the presence of NO3-, the kobs of IOX followed the order: 265 > 255 > 275 > 285 nm. Photosensitizers altered the spectral dependence of IOX, and the intermediate photoactivity products were detected using electron spin resonance. The transformation pathways of IOX were determined through density functional theory calculations and experiments. Disinfection by-products (DBPs) yields of IOX during UV-LED irradiation decreased as the wavelength increased: 255 > 265 > 275 > 285 nm. The cytotoxicity index value decreased as the UV-LED wavelength increased from 255 to 285 nm. These findings are crucial for selecting the most efficient wavelength for UV-LED degradation of ICM and will benefit future water purification design.

11.
J Alzheimers Dis ; 98(3): 941-955, 2024.
Article En | MEDLINE | ID: mdl-38489185

Background: As a prodromal stage of dementia, significant emphasis has been placed on the identification of modifiable risks of mild cognitive impairment (MCI). Research has indicated a correlation between exposure to air pollution and cognitive function in older adults. However, few studies have examined such an association among the MCI population inChina. Objective: We aimed to explore the association between air pollution exposure and MCI risk from the Hubei Memory and Aging Cohort Study. Methods: We measured four pollutants from 2015 to 2018, 3 years before the cognitive assessment of the participants. Logistic regression models were employed to calculate odds ratios (ORs) to assess the relationship between air pollutants and MCI risk. Results: Among 4,205 older participants, the adjusted ORs of MCI risk for the highest quartile of PM2.5, PM10, O3, and SO2 were 1.90 (1.39, 2.62), 1.77 (1.28, 2.47), 0.56 (0.42, 0.75), and 1.18 (0.87, 1.61) respectively, compared with the lowest quartile. Stratified analyses indicated that such associations were found in both males and females, but were more significant in older participants. Conclusions: Our findings are consistent with the growing evidence suggesting that air pollution increases the risk of mild cognitive decline, which has considerable guiding significance for early intervention of dementia in the older population. Further studies in other populations and broader geographical areas are warranted to validate these findings.


Air Pollutants , Air Pollution , Cognitive Dysfunction , Dementia , Male , Female , Humans , Aged , Cohort Studies , Case-Control Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Cognitive Dysfunction/epidemiology , China/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis
12.
PLoS Pathog ; 20(3): e1012103, 2024 Mar.
Article En | MEDLINE | ID: mdl-38489378

Alphacoronaviruses are the primary coronaviruses responsible for causing severe economic losses in the pig industry with the potential to cause human outbreaks. Currently, extensive studies have reported the essential role of endosomal sorting and transport complexes (ESCRT) in the life cycle of enveloped viruses. However, very little information is available about which ESCRT components are crucial for alphacoronaviruses infection. By using RNA interference in combination with Co-immunoprecipitation, as well as fluorescence and electron microscopy approaches, we have dissected the role of ALIX and TSG101 for two porcine alphacoronavirus cellular entry and replication. Results show that infection by two porcine alphacoronaviruses, including porcine epidemic diarrhea virus (PEDV) and porcine enteric alphacoronavirus (PEAV), is dramatically decreased in ALIX- or TSG101-depleted cells. Furthermore, PEDV entry significantly increases the interaction of ALIX with caveolin-1 (CAV1) and RAB7, which are crucial for viral endocytosis and lysosomal transport, however, does not require TSG101. Interestingly, PEAV not only relies on ALIX to regulate viral endocytosis and lysosomal transport, but also requires TSG101 to regulate macropinocytosis. Besides, ALIX and TSG101 are recruited to the replication sites of PEDV and PEAV where they become localized within the endoplasmic reticulum and virus-induced double-membrane vesicles. PEDV and PEAV replication were significantly inhibited by depletion of ALIX and TSG101 in Vero cells or primary jejunal epithelial cells, indicating that ALIX and TSG101 are crucial for PEDV and PEAV replication. Collectively, these data highlight the dual role of ALIX and TSG101 in the entry and replication of two porcine alphacoronaviruses. Thus, ESCRT proteins could serve as therapeutic targets against two porcine alphacoronaviruses infection.


Alphacoronavirus , Calcium-Binding Proteins , Porcine epidemic diarrhea virus , Animals , Alphacoronavirus/metabolism , Cell Line , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Cells/metabolism , Porcine epidemic diarrhea virus/metabolism , Swine , Vero Cells , Virus Replication , Calcium-Binding Proteins/metabolism
13.
Mult Scler ; 30(6): 738-746, 2024 May.
Article En | MEDLINE | ID: mdl-38525561

BACKGROUND: Results of research on radiological hallmarks of multiple sclerosis (MS) fatigue have been conflicting. OBJECTIVE: To investigate the associations of lesion and brain compartment volumes with fatigue severity and persistence in people with multiple sclerosis (PwMS). METHODS: The Multiple Sclerosis Partners Advancing Technology and Health Solutions (MS PATHS) network collects standardized data during routine care of PwMS from 10 healthcare institutions. Magnetic resonance imaging (MRI) predictors included baseline brain parenchymal (BPF) and gray matter fractions (GMF) and T2 lesion volume (T2LV). The Quality of Life in Neurological Disorders (Neuro-QOL) fatigue subscore was analyzed linearly and categorically using T-score cutpoints, with a period of elevated symptoms defined as T-score ⩾ mean + 0.5 SD over follow-up. RESULTS: At baseline, of 4012 participants (average age: 45.6 ± 11.8 years; 73% female; 31% progressive MS), 2058 (51%) had no fatigue, 629 (16%) had mild fatigue, and 1325 (33%) had moderate-to-severe fatigue. One SD greater baseline BPF and GMF were associated with 0.83 (p < 0.001) and 0.38 (p = 0.02) lower values in the baseline Neuro-QOL fatigue T-score. A 1 SD lower log of total T2LV was associated with a 0.49 (p < 0.001) lower baseline fatigue T-score. Higher BPF and lower T2LV at baseline were associated with lower odds of subsequent periods of elevated fatigue. CONCLUSION: Baseline lesion burden and lower generalized whole-brain volumes were associated with MS fatigue in cross-sectional and longitudinal analyses in a large, real-world cohort of PwMS.


Fatigue , Magnetic Resonance Imaging , Multiple Sclerosis , Severity of Illness Index , Humans , Female , Male , Middle Aged , Fatigue/etiology , Fatigue/diagnostic imaging , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis/complications , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Cohort Studies , Quality of Life
14.
Acta Pharmacol Sin ; 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438582

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.

15.
Sensors (Basel) ; 24(5)2024 Mar 06.
Article En | MEDLINE | ID: mdl-38475246

In the autonomous navigation of mobile robots, precise positioning is crucial. In forest environments with weak satellite signals or in sites disturbed by complex environments, satellite positioning accuracy has difficulty in meeting the requirements of autonomous navigation positioning accuracy for robots. This article proposes a vision SLAM/UWB tightly coupled localization method and designs a UWB non-line-of-sight error identification method using the displacement increment of the visual odometer. It utilizes the displacement increment of visual output and UWB ranging information as measurement values and applies the extended Kalman filtering algorithm for data fusion. This study utilized the constructed experimental platform to collect images and ultra-wideband ranging data in outdoor environments and experimentally validated the combined positioning method. The experimental results show that the algorithm outperforms individual UWB or loosely coupled combination positioning methods in terms of positioning accuracy. It effectively eliminates non-line-of-sight errors in UWB, improving the accuracy and stability of the combined positioning system.

16.
ACS Appl Mater Interfaces ; 16(10): 13060-13070, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38438118

Hierarchical structure and surface topography play pivotal roles in developing high-performance solar-driven evaporators for clean water production; however, there exists a notable gap in research addressing simultaneous modulation of internal microstructure and surface topography in hydrogels to enhance both solar steam generation performance and desalination efficiency. Herein, anisotropic poly(vinyl alcohol)/MXene composite hydrogels for efficient solar-driven water evaporation and wastewater purification are fabricated using a template-assisted directional freezing approach followed by precise surface wettability modulation. The resultant composite hydrogels exhibit vertically oriented channels that ensure fast water supply during evaporation, and their poly(vinyl alcohol) skeletons can reduce the vaporization enthalpy of the water in the hydrogels. The incorporation of MXene sheets enables efficient solar light absorption and solar-thermal conversion while providing structural reinforcement to the hydrogels. More importantly, the as-created undulating solar-thermal surface, featuring modulated hydrophilic troughs and hydrophobic crests, significantly enhances solar-thermal conversion efficiency, thereby boosting solar evaporation performances. As a result, the fabricated hydrogel-based evaporator exhibits an impressive evaporation rate of 2.55 kg m-2 h-1 under 1 sun irradiation, coupled with long-term durability and desalination stability. Notably, the outstanding mechanical robustness of the hydrogel further enables high portability through a readily achievable process of reversible dehydration/hydration.

17.
Clin Oral Investig ; 28(4): 221, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38499908

OBJECTIVES: To establish a three-dimensional finite element model of the upper palate, pharyngeal cavity, and levator veli palatini muscle in patients with unilateral complete cleft palate, simulate two surgical procedures that the two-flap method and Furlow reverse double Z method, observe the stress distribution of the upper palate soft tissue and changes in pharyngeal cavity area after different surgical methods, and verify the accuracy of the model by reconstructing and measuring the levator veli palatini muscle. MATERIALS AND METHODS: Mimics, Geomagic, Ansys, and Hypermesh were applied to establish three-dimensional finite element models of the pharyngeal cavity, upper palate, and levator veli palatini muscle in patients with unilateral complete cleft palate. The parameters including length, angle, and cross-sectional area of the levator veli palatini muscle etc. were measured in Mimics, and two surgical procedures that two-flap method and Furlow reverse double Z method were simulated in Ansys, and the area of pharyngeal cavity was measured by hypermesh. RESULTS: A three-dimensional finite element model of the upper palate, pharyngeal cavity, and bilateral levator veli palatini muscle was established in patients with unilateral complete cleft palate ; The concept of horizontal projection characteristics of the palatal dome was applied to the finite element simulation of cleft palate surgery, vividly simulating the displacement and elastic stretching of the two flap method and Furlow reverse double Z method during the surgical process; The areas with the highest stress in the two-flap method and Furlow reverse double Z method both occur in the hard soft palate junction area; In resting state, as measured, the two flap method can narrow the pharyngeal cavity area by 50.9%, while the Furlow reverse double Z method can narrow the pharyngeal cavity area by 65.4%; The measurement results of the levator veli palatini muscle showed no significant difference compared to previous studies, confirming the accuracy of the model. CONCLUSIONS: The finite element method was used to establish a model to simulate the surgical procedure, which is effective and reliable. The area with the highest postoperative stress for both methods is the hard soft palate junction area, and the stress of the Furlow reverse double Z method is lower than that of the two-flap method. The anatomical conditions of pharyngeal cavity of Furlow reverse double Z method are better than that of two-flap method in the resting state. CLINICAL RELEVANCE: This article uses three-dimensional finite element method to simulate the commonly used two-flap method and Furlow reverse double Z method in clinical cleft palate surgery, and analyzes the stress distribution characteristics and changes in pharyngeal cavity area of the two surgical methods, in order to provide a theoretical basis for the surgeon to choose the surgical method and reduce the occurrence of complications.


Cleft Palate , Velopharyngeal Insufficiency , Humans , Cleft Palate/surgery , Cleft Palate/complications , Finite Element Analysis , Velopharyngeal Insufficiency/complications , Velopharyngeal Insufficiency/surgery , Palatal Muscles/surgery , Palate, Soft/surgery , Palate, Hard
18.
Nat Med ; 30(4): 1023-1034, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504015

Gastroesophageal cancer dynamics and drivers of clinical responses with immune checkpoint inhibitors (ICI) remain poorly understood. Potential synergistic activity of dual programmed cell death protein 1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) inhibition may help improve immunotherapy responses for these tumors. We report a phase Ib trial that evaluated neoadjuvant nivolumab (Arm A, n = 16) or nivolumab-relatlimab (Arm B, n = 16) in combination with chemoradiotherapy in 32 patients with resectable stage II/stage III gastroesophageal cancer together with an in-depth evaluation of pathological, molecular and functional immune responses. Primary endpoint was safety; the secondary endpoint was feasibility; exploratory endpoints included pathological complete (pCR) and major pathological response (MPR), recurrence-free survival (RFS) and overall survival (OS). The study met its primary safety endpoint in Arm A, although Arm B required modification to mitigate toxicity. pCR and MPR rates were 40% and 53.5% for Arm A and 21.4% and 57.1% for Arm B. Most common adverse events were fatigue, nausea, thrombocytopenia and dermatitis. Overall, 2-year RFS and OS rates were 72.5% and 82.6%, respectively. Higher baseline programmed cell death ligand 1 (PD-L1) and LAG-3 expression were associated with deeper pathological responses. Exploratory analyses of circulating tumor DNA (ctDNA) showed that patients with undetectable ctDNA post-ICI induction, preoperatively and postoperatively had a significantly longer RFS and OS; ctDNA clearance was reflective of neoantigen-specific T cell responses. Our findings provide insights into the safety profile of combined PD-1 and LAG-3 blockade in gastroesophageal cancer and highlight the potential of ctDNA analysis to dynamically assess systemic tumor burden during neoadjuvant ICI that may open a therapeutic window for future intervention. ClinicalTrials.gov registration: NCT03044613 .


Antibodies, Monoclonal, Humanized , Esophageal Neoplasms , Stomach Neoplasms , Humans , Nivolumab/therapeutic use , Programmed Cell Death 1 Receptor , Neoadjuvant Therapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophagogastric Junction , Antineoplastic Combined Chemotherapy Protocols/adverse effects
19.
Adv Sci (Weinh) ; 11(15): e2306070, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350718

Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.


Bacteria , Quorum Sensing , Virulence , Signal Transduction
20.
Cancer Lett ; 588: 216762, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38408602

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Acrylamides , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Organophosphorus Compounds , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , ErbB Receptors/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Aniline Compounds/pharmacology , Sialyltransferases/genetics
...