Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
Gene ; 927: 148730, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944165

RESUMEN

Hypertrophic scar (HS) presents a significant clinical challenge, frequently arising as a fibrotic sequela of burn injuries and trauma. Characterized by the aberrant activation and proliferation of myofibroblasts, HS lacks a targeted therapeutic approach to effectively reduce this dysregulation. This study offers novel evidence of upregulated expression of CD248 in HS tissues compared to normal skin (NS) tissues. Specifically, the expression of CD248 was predominantly localized to α-SMA+-myofibroblasts in the dermis. To explain the functional role of CD248 in dermal myofibroblast activity, we employed a targeted anti-CD248 antibody, IgG78. Both CD248 intervention and IgG78 treatment effectively suppressed the proliferative, migratory, and ECM-synthesizing activities of myofibroblasts isolated from HS dermis. In addition, IgG78 administration significantly attenuated HS formation in an in vivo rabbit ear model. The LC/MS analysis coupled with co-immunoprecipitation of HS tissues indicated a direct interaction between CD248 and the ECM components Fibronectin (FN) and Collagen I (COL I). These findings collectively suggest that CD248 may function as a pro-fibrotic factor in HS development through its interaction with ECM constituents. The utilization of an anti-CD248 antibody, such as IgG78, represents a promising novel therapeutic strategy for the treatment of HS.

2.
Cell Biol Toxicol ; 40(1): 39, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789630

RESUMEN

Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H2O2, serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H2O2-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H2O2 facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H2O2. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H2O2 and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H2O2-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.


Asunto(s)
Tejido Adiposo , Exosomas , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno , MicroARNs , Estrés Oxidativo , Transducción de Señal , Sirtuinas , Animales , Humanos , Tejido Adiposo/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , MicroARNs/metabolismo , MicroARNs/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuinas/metabolismo , Sirtuinas/genética , Proteínas Smad/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos
3.
Burns Trauma ; 12: tkae010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803612

RESUMEN

Background: Diabetic chronic wounds are among the most common and serious complications of diabetes and are associated with significant morbidity and mortality. Endothelial-to-mesenchymal transition (EndMT) is a specific pathological state in which endothelial cells are transformed into mesenchymal cells in response to various stimuli, such as high glucose levels and high oxidative stress. Acidic fibroblast growth factor (aFGF), which is a member of the fibroblast growth factor family, possesses strong antioxidant properties and can promote the differentiation of mesenchymal stem cells into angiogenic cells. Therefore, we investigated the role of aFGF in EndMT in diabetic wounds and analysed the underlying mechanisms. Methods: A diabetic mouse model was used to verify the effect of aFGF on wound healing, and the effect of aFGF on vascular endothelial cells in a high-glucose environment was examined in vitro. We examined the expression of miR-155-5p in a high-glucose environment and the miR-155 downstream target gene SIRT1 by luciferase reporter assays. Results: aFGF promoted wound closure and neovascularization in a mouse model of type 2 diabetes. In vitro, aFGF inhibited the production of total and mitochondrial reactive oxygen species (ROS) in vascular endothelial cells and alleviated epithelial-mesenchymal transdifferentiation in a high-glucose environment. Mechanistically, aFGF promoted the expression of SIRT1 and the downstream targets Nrf2 and HO-1 by negatively regulating miR-155-5p, thereby reducing ROS generation. Conclusions: In conclusion, our results suggest that aFGF inhibits ROS-induced epithelial-mesenchymal transdifferentiation in diabetic vascular endothelial cells via the miR-155-5p/SIRT1/Nrf2/HO-1 axis, thereby promoting wound healing.

4.
Burns Trauma ; 12: tkad064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765787

RESUMEN

Background: Hypertrophic scarring is the most serious and unmet challenge following burn and trauma injury and often leads to pain, itching and even loss of function. However, the demand for ideal scar prevention and treatment is difficult to satisfy. We aimed to discover the effects and mechanisms of adipose-derived stem cell (ADSC) exosomes in hypertrophic scarring. Methods: ADSC exosomes were isolated from the culture supernatant of ADSCs and identified by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The effect of ADSC exosomes on wound healing and scar formation was detected by the wound model of BALB/c mice. We isolated myofibroblasts from hypertrophic scar tissue and detected the cell viability, proliferation and migration of myofibroblasts. In addition, collagen formation and fibrosis-related molecules were also detected. To further disclose the mechanism of ADSC exosomes on fibrosis in myofibroblasts, we detected the expression of Smad2 in hypertrophic scar tissue and normal skin and the regulatory mechanism of ADSC exosomes on Smad2. Injection of bleomycin was performed in male BALB/c mice to establish an in vivo fibrosis model while ADSC exosomes were administered to observe their protective effect. The tissue injury of mice was observed via hematoxylin and eosin and Masson staining and related testing. Results: In this study, we found that ADSC exosomes could not only speed up wound healing and improve healing quality but also prevent scar formation. ADSC exosomes inhibited expression of fibrosis-related molecules such as α-smooth muscle actin, collagen I (COL1) and COL3 and inhibited the transdifferentiation of myofibroblasts. In addition, we verified that Smad2 is highly expressed in both hypertrophic scar tissue and hypertrophic fibroblasts, while ADSC exosomes downregulated the expression of Smad2 in hypertrophic fibroblasts. Further regulatory mechanism analysis revealed that microRNA-125b-5p (miR-125b-5p) is highly expressed in ADSC exosomes and binds to the 3' untranslated region of Smad2, thus inhibiting its expression. In vivo experiments also revealed that ADSC exosomes could alleviate bleomycin-induced skin fibrosis and downregulate the expression of Smad2. Conclusions: We found that ADSC exosomes could alleviate hypertrophic scars via the suppression of Smad2 by the specific delivery of miR-125b-5p.

5.
J Plast Surg Hand Surg ; 59: 72-76, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769787

RESUMEN

BACKGROUND: The purpose of this article is to introduce a method that combines limited debridement and ReCell® autologous cell regeneration techniques for the treatment of deep second-degree burn wounds. METHOD: A total of 20 patients suffered with deep second-degree burns less than 10% of total body surface area (TBSA) who were admitted to our department, from June 2019 to June 2021, participated in this study. These patients first underwent limited debridement with an electric/pneumatic dermatome, followed by the ReCell® technique for secondary wounds. Routine treatment was applied to prevent scarring after the wound healed. Clinical outcomes were scored using the Vancouver Scar Scale (VSS). RESULTS: All wounds of the patients healed completely. One patient developed an infection in the skin graft area and finally recovered by routine dressing changes. The average healing time was 12 days (range: 10-15 days). The new skin in the treated area was soft and matched the colour of the surrounding normal skin and the VSS score ranged from 3~5 for each patient. Of the 20 patients, 19 were very satisfied and 1 was satisfied. CONCLUSIONS: This article reports a useful treatment method that combines electric dermatome-dependent limited debridement and the ReCell® technique for the treatment of deep second-degree burn wounds. It is a feasible and effective strategy that is easy to implement and minimally invasive, and it is associated with a short healing time, mild scar formation and little damage to the donor skin area.


Asunto(s)
Quemaduras , Desbridamiento , Trasplante de Piel , Humanos , Quemaduras/cirugía , Quemaduras/terapia , Desbridamiento/métodos , Masculino , Adulto , Femenino , Trasplante de Piel/métodos , Persona de Mediana Edad , Adulto Joven , Cicatrización de Heridas/fisiología , Cicatriz , Adolescente , Poliésteres
6.
Sensors (Basel) ; 24(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793884

RESUMEN

Autonomous Underwater Vehicles (AUVs) play a significant role in ocean-related research fields as tools for human exploration and the development of marine resources. However, the uncertainty of the underwater environment and the complexity of underwater motion pose significant challenges to the fault-tolerant control of AUV actuators. This paper presents a fault-tolerant control strategy for AUV actuators based onTakagi and Sugeno (T-S) fuzzy logic and pseudo-inverse quadratic programming under control constraints, aimed at addressing potential actuator faults. Firstly, considering the steady-state performance and dynamic performance of the control system, a T-S fuzzy controller is designed. Next, based on the redundant configuration of the actuators, the propulsion system is normalized, and the fault-tolerant control of AUV actuators is achieved using the pseudo-inverse method under thrust allocation. When control is constrained, a quadratic programming approach is used to compensate for the input control quantity. Finally, the effectiveness of the fuzzy control and fault-tolerant control allocation methods studied in this paper is validated through mathematical simulation. The experimental results indicate that in various fault scenarios, the pseudo-inverse combined with a nonlinear quadratic programming algorithm can compensate for the missing control inputs due to control constraints, ensuring the normal thrust of AUV actuators and achieving the expected fault-tolerant effect.

7.
Diabetes Metab Res Rev ; 40(3): e3776, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402455

RESUMEN

Diabetic foot ulcer complicated with lower extremity vasculopathy is highly prevalent, slow healing and have a poor prognosis. The final progression leads to amputation, or may even be life-threatening, seriously affecting patients' quality of life. The treatment of lower extremity vasculopathy is the focus of clinical practice and is vital to improving the healing process of diabetic foot ulcers. Recently, a number of clinical trials on diabetic foot ulcers with lower extremity vasculopathy have been reported. A joint group of Chinese Medical Association (CMA) and Chinese Medical Doctor Association (CMDA) expert representatives reviewed and reached a consensus on the guidelines for the clinical diagnosis and treatment of this kind of disease. These guidelines are based on evidence from the literature and cover the pathogenesis of diabetic foot ulcers complicated with lower extremity vasculopathy and the application of new treatment approaches. These guidelines have been put forward to guide practitioners on the best approaches for screening, diagnosing and treating diabetic foot ulcers with lower extremity vasculopathy, with the aim of providing optimal, evidence-based management for medical personnel working with diabetic foot wound repair and treatment.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Úlcera del Pie , Glutamatos , Compuestos de Mostaza Nitrogenada , Humanos , Pie Diabético/complicaciones , Pie Diabético/diagnóstico , Pie Diabético/terapia , Consenso , Calidad de Vida , Extremidad Inferior
8.
Scars Burn Heal ; 10: 20595131241230739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385064

RESUMEN

Introduction: Postburn scarring often presents a specific reconstructive challenge from both functional and cosmetic perspectives. The purpose of this study was to investigate whether autologous nanofat harvested from the donor site of full skin or a skin flap can be reused for the treatment of early postburn scaring. Methods: From July 2018 to April 2022, patients with early postburn scarring underwent scar reconstruction surgery with full-thickness skin or a skin flap for a contour deformity and/or scar contracture, and autologous nanofat grafting was performed during the same operation. The Vancouver Scar Score (VSS) and the itch and pain scores were evaluated at the preoperation time point as well as at 2-3 weeks and 3-months postoperation. A comparison was made among the same patients at different time points. Results: A total of 17 patients, aged from 18 months to 62 years old were included in this analysis. The VSS was reduced from 10.00 ± 2.12 to 7.41 ± 1.277 at the 2-3-week postoperation time point, and to 5.53 ± 1.37 at the 3-month postoperation time point. The pain and itch score were reduced from 4.65 ± 1.37 and 6.35 ± 1.27, to 3.70 ± 1.10 and 4.94 ± 1.30 at the 2-3-week postoperation time point, and to 3.00 ± 1.28 and 3.94 ± 0.97 at the 3-month postoperation time point respectively. The VSS and pain and itch scores showed a statistically significant reduction (P < 0.05) at the 2-3-week and 3-month postoperative follow-ups compared with the preoperation time point. Conclusion: Autologous nanofat grafting from donor sites of full thickness skin or skin flap may be a promising treatment for an early postburn scaring as it promotes scar softening, improves itching and pain within the scar. However, this is a small case series with only 17 patients. Further conclusions need to be drawn through expanded samples for randomized controlled clinical trials. Lay Summary: Hypertrophic scarring is the most common complication after partial thickness burn injury, and the complex pathogenesis and prolonged dynamic process render treatments only marginally effective. In the past few decades, with the technological advances of liposuction and fat grafting, nanofat grafting has been used in a variety of surgical fields, including wound healing, scleroderma, facial rejuvenation, and neuralgia. However, the role of nanofat grafting is not well documented in the prevention and treatment of early postburn scarring. Full-thickness skin grafting or skin flap transplantation is the most common method for the reconstruction of a hypertrophic scaring until now. In the current study, we harvested subcutaneous fat during the preparation of the full-thickness skin or skin flap, prepared nanofat and injected it in the scar located at a nonsurgical site. Comparison of the pre- and postoperation scores for scar color, scar thickness, scar stiffness, and scar regularity showed that the postoperation scores were decreased significantly and that there was a significant improvement in scar pigmentation and thickness as well astheaesthetic outcome after treatment. Most importantly, reductions in the scores for pain and itching could be assessed objectively. It seems that the nanofat grafting is a potential method for prevention and treatment for early postburn scaring.

9.
BMC Musculoskelet Disord ; 25(1): 48, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200504

RESUMEN

BACKGROUND: To compare the clinical efficacies of arthroscopic anterior talofibular ligament suture augmentation repair and modified suture augmentation repair in patients with chronic ankle instability (CAI). METHODS: From October 2019 to August 2020, 100 patients with CAI were enrolled after propensity score matching analysis and observed for two years. Among them, 50 underwent modified suture augmentation repair and the other 50 underwent suture augmentation repair. The clinical efficacies of CAI treatments were evaluated using the American Orthopedic Foot and Ankle Society (AOFAS) clinical rating scale, visual analog scale (VAS), and anterior drawer test scores. RESULTS: The postoperative AOFAS score of the modified suture augmentation repair group (83.8 ± 11.3) was significantly higher than that of the suture augmentation repair group (76.3 ± 11.3; P = 0.001). The VAS (P = 0.863) and anterior drawer test (P = 0.617) scores were not significantly different between the two treatment groups. CONCLUSION: Both the modified suture augmentation repair and suture augmentation repair demonstrated good clinical efficacies. The AOFAS score of the modified suture augmentation repair group was superior to that of the conventional suture augmentation repair group. Thus, modified suture augmentation repair is a feasible and practical surgical technique for CAI treatment.


Asunto(s)
Inestabilidad de la Articulación , Ligamentos Laterales del Tobillo , Humanos , Tobillo , Procedimientos Neuroquirúrgicos , Inestabilidad de la Articulación/cirugía , Suturas , Ligamentos Laterales del Tobillo/cirugía
10.
JPRAS Open ; 39: 1-10, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38076652

RESUMEN

Introduction: The repair of extensive tissue defects remains a challenge, although great progress has been made in reconstructive surgery. The transplantation of a single huge flap or several flaps in combination will inevitably result in donor-site morbidity. Here we report our experience in the repair of these wounds with laparoscopically harvested great omentum flaps. Methods: Twelve patients with extensive tissue defects caused by deep burn injury, avulsion injury, and open fracture underwent free omental flap transplantation and split-thickness skin grafting. The patient demographics, wound characteristics, and complications postsurgical operation were recorded. Prior to omentum flap transplantation, these patients underwent debridement, vacuum sealing drainage treatment, and/or fixation of fractures. All omentum flaps harvested using laparoscopic technique were anastomosed to recipient vessels, and split-thickness skin grafting was performed 14 days after omental flap transplantation. Results: The mean defect size was 471 cm2 and the mean omental flap size was 751.1 cm2. Among all 12 cases, the omental flaps survived well except for distal partial necrosis in one case. Skin grafting was also achieved in all cases, and all patients achieved complete wound coverage. All donor sites achieved primary healing without major complications. The mean follow-up time was 30 months with satisfactory appearance and functional outcome. Conclusion: For the reconstruction of extensive tissue defects in complex wounds, the free transfer of an omental flap may be an ideal option because of its well-vascularized and pliable tissue with reliable vascular anatomy, as well as minimized donor-site morbidity.

11.
J Mol Med (Berl) ; 101(11): 1397-1407, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37707556

RESUMEN

Macrophage is a critical regulator in wound healing and scar formation, and SIRT1 is related to macrophage activation and polarization, while the specific mechanism is still unclear. To explore the specific effects of SIRT1 in scarring, we established a skin incision mouse model and LPS-induced inflammation cell model. The expression of SIRT1 in tissue and macrophage was detected, and the level of SIRT1 was changed to observe the downstream effects. LPS-induced macrophages with or without SIRT1 deficiency were used for TMT-based quantitative proteomic analysis. SIRT1 was suppressed in scar while increased in macrophages of scar tissue. And macrophages were proven to be necessary for wound healing. In the early stage of wound healing, knockout of SIRT1 in macrophage could greatly strengthen inflammation and finally promote scarring. NADH-related activities and oxidoreductase activities were differentially expressed in TMT-based quantitative proteomic analysis. We confirmed that ROS production and NOX2 level were elevated after LPS stimulation while the Nrf2 pathway and the downstream proteins, such as Nqo-1 and HO-1, were suppressed. In contrast, the suppression of SIRT1 strengthened this trend. The NF-κB pathway was remarkably activated compared with the control group. Insufficient increase of SIRT1 in macrophage leads to over activated oxidative stress and activates NF-κB pathways, which then promotes inflammation in wound healing and scarring. Further increasing SIRT1 in macrophages could be a promising method to alleviate scarring. KEY MESSAGES: SIRT1 was suppressed in scar while increased in macrophages of scar tissue. Inhibition of SIRT1 in macrophage leads to further activated oxidative stress. SIRT1 is negatively related to oxidative stress in macrophage. The elevation of SIRT1 in macrophage is insufficient during scarring.


Asunto(s)
Cicatriz , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Lipopolisacáridos/farmacología , Proteómica , Macrófagos/metabolismo , Inflamación/metabolismo , Estrés Oxidativo
12.
Cancer Med ; 12(19): 19794-19806, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37746916

RESUMEN

BACKGROUND: The utilization of neoadjuvant therapy is progressively expanding in various clinical settings. However, the absence of a clinically validated biomarker to evaluate the treatment response remains a significant challenge in the field. Circulating tumor DNA (ctDNA) detection, a novel and emerging monitoring approach in the field of oncology, holds promise as a potential prognostic biomarker for patients with cancer. This meta-analysis investigated the clinical significance of ctDNA detection as a predictive tool for cancer recurrence in patients receiving neoadjuvant treatment. METHODS: A comprehensive systematic literature search was conducted using public databases to identify relevant studies that investigated the association between ctDNA detection and cancer recurrence in patients receiving neoadjuvant treatment. Hazard ratios (HRs) and their corresponding 95% confidence intervals (95% CI) were calculated to assess the relationship between cancer recurrence and relevant factors. Cancer recurrence was considered the primary outcome. RESULTS: A total of 23 studies encompassing 1590 patients across eight different cancer types were included in the final analysis. Positive ctDNA detection was significantly associated with higher cancer recurrence, especially at post-neoadjuvant treatment and post-surgery time points. The risk values for the different cancer categories and geographic areas also differed significantly. CONCLUSION: Our comprehensive meta-analysis revealed a significant positive correlation between ctDNA detection and a higher risk of cancer recurrence in patients receiving neoadjuvant treatment. In addition, the risk of recurrence was influenced by variations in cancer type, timing of detection, and geographic region. These findings highlight the promising clinical applicability of ctDNA as a prognostic marker and monitoring approach for patients with cancer. However, the precise mechanism is unknown and more evidence is needed for further research.


Asunto(s)
ADN Tumoral Circulante , Terapia Neoadyuvante , Humanos , Pronóstico , Recurrencia Local de Neoplasia/genética , ADN Tumoral Circulante/genética , Biomarcadores , Biomarcadores de Tumor/genética
13.
ACS Appl Mater Interfaces ; 15(31): 38132-38142, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506049

RESUMEN

Silica glass devices are widely used due to their exceptional physical and chemical properties. However, prolonged usage may result in abrasion and contamination of silica glass devices, adversely affecting the service life. One of the most effective solutions to this issue is surface modification, in which superhydrophobicity with high transmittance and mechanical robustness is highly desired. Inspired by the concept of protective armor, we proposed a novel approach for the direct integration of robust and transparent superhydrophobic structures on silica glass. In this method, microstereolithography synergistic heat treatment processes are used to create a micrometer-scale biomimetic frame on the surface of silica glass and then filled with in situ deposited nanoparticles. The superhydrophobicity of the surface can be obtained through the nanoparticles, and the biomimetic frame can protect the surface from direct contact with external objects to achieve durability. This process allows the preparation of superhydrophobic silica structures on the silica device surface at temperatures below its melting point, which prevents any damage to the devices during the heat treatment. Moreover, up to 90% transmittance does not affect the performance of silica devices. The composite structure maintains a contact angle of over 150° after multiple abrasion tests, verifying the mechanical robustness. This innovative process paves the way for forming a high mechanical robustness and excellent transmittance protective layer on silica glass devices, which expands the application field.

14.
Adv Mater ; 35(40): e2303642, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37342075

RESUMEN

Engineered skin substitutes derived from human skin significantly reduce inflammatory reactions mediated by foreign/artificial materials and are consequently easier to use for clinical application. Type I collagen is a main component of the extracellular matrix during wound healing and has excellent biocompatibility, and platelet-rich plasma can be used as the initiator of the healing cascade. Adipose mesenchymal stem cell derived exosomes are crucial for tissue repair and play key roles in enhancing cell regeneration, promoting angiogenesis, regulating inflammation, and remodeling extracellular matrix. Herein, Type I collagen and platelet-rich plasma, which provide natural supports for keratinocyte and fibroblast adhesion, migration, and proliferation, are mixed to form a stable 3D scaffold. Adipose mesenchymal stem cell derived exosomes are added to the scaffold to improve the performance of the engineered skin. The physicochemical properties of this cellular scaffold are analyzed, and the repair effect is evaluated in a full-thickness skin defect mouse model. The cellular scaffold reduces the level of inflammation and promotes cell proliferation and angiogenesis to accelerate wound healing. Proteomic analysis shows that exosomes exhibit excellent anti-inflammatory and proangiogenic effects in collagen/platelet-rich plasma scaffolds. The proposed method provides a new therapeutic strategy and theoretical basis for tissue regeneration and wound repair.

15.
Arch Biochem Biophys ; 743: 109645, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37225009

RESUMEN

Deep second-degree burns heal slowly, and promoting the healing process is a focus of clinical research. Sestrin2 is a stress-inducible protein with antioxidant and metabolic regulatory effects. However, its role during acute dermal and epidermal re-epithelialization in deep second-degree burns is unknown. In this study, we aimed to explore the role and molecular mechanism of sestrin2 in deep second-degree burns as a potential treatment target for burn wounds. To explore the effects of sestrin2 on burn wound healing, we established a deep second-degree burn mouse model. Then we detected the expression of sestrin2 by western blot and immunohistochemistry after obtaining the wound margin of full-thickness burned skin. The effects of sestrin2 on burn wound healing were explored in vivo and in vitro through interfering sestrin2 expression using siRNAs or the small molecule agonist of sestrin2, eupatilin. We also investigated the molecular mechanism of sestrin2 in promoting burn wound healing by western blot and CCK-8 assay. Our in vivo and in vitro deep second-degree burn wound healing model demonstrated that sestrin2 was promptly induced at murine skin wound edges. The small molecule agonist of sestrin2 accelerated the proliferation and migration of keratinocytes, as well as burn wound healing. Conversely, the healing of burn wounds was delayed in sestrin2-deficient mice and was accompanied by the secretion of inflammatory cytokines as well as the suppression of keratinocyte proliferation and migration. Mechanistically, sestrin2 promoted the phosphorylation of the PI3K/AKT pathway, and inhibition of PI3K/AKT pathway abrogated the promoting role of sestrin2 in keratinocyte proliferation and migration. Therefore, sestrin2 plays a critical role in activation of the PI3K/AKT pathway to promote keratinocyte proliferation and migration, as well as re-epithelialization in the process of deep second-degree burn wound repair.


Asunto(s)
Quemaduras , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Quemaduras/tratamiento farmacológico , Quemaduras/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piel/metabolismo , Cicatrización de Heridas
16.
Exp Biol Med (Maywood) ; 248(11): 922-935, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37211747

RESUMEN

Sepsis is characterized by uncontrolled inflammatory response and altered polarization of macrophages at the early phase. Akt is known to drive macrophage inflammatory response. However, how macrophage inflammatory response is fine-tuned by Akt is poorly understood. Here, we found that Lys14 and Lys20 of Akt is deacetylated by the histone deacetylase SIRT1 during macrophage activation to suppress macrophages inflammatory response. Mechanistically, SIRT1 promotes Akt deacetylation to inhibit the activation of NF-κB and pro-inflammatory cytokines. Loss of SIRT1 facilitates Akt acetylation and thus promotes inflammatory cytokines in mouse macrophages, potentially worsen the progression of sepsis in mice. By contrast, the upregulation of SIRT1 in macrophages further contributes to the inhibition of pro-inflammatory cytokines via Akt activation in sepsis. Taken together, our findings establish Akt deacetylation as an essential negative regulatory mechanism that curtails M1 polarization.


Asunto(s)
Sepsis , Sirtuina 1 , Animales , Ratones , Citocinas , Inflamación , Macrófagos , FN-kappa B , Proteínas Proto-Oncogénicas c-akt
17.
Ann Med ; 55(1): 2215543, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37212453

RESUMEN

OBJECTIVE: We performed an umbrella meta-analysis to explore the factors that influence the efficacy of immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS: We systematically searched three databases (PubMed, Web of Science and Embase) up to 20 February 2023. Extracting the effect size and 95% confidence intervals for overall survival (OS), progression-free survival (PFS) and the objective response rate (ORR). RESULTS: A total of 65 articles were included. We identified the following factors that benefit ICI therapy: smoking status (PFS: 0.72 [0.62, 0.84], p < .001), chemotherapy (PFS: 0.68 [0.58, 0.79], p < .001), expression of programmed cell death ligand 1(PD-L1) (≥1%, ≥5%, or ≥10%) (≥1%: 0.76 [0.71,0.82], p < .001; ≥5%: 0.62 [0.52, 0.74], p < .001; ≥10%: 0.42 [0.30, 0.59], p < .001). We also identified three adverse factors: epidermal growth factor receptor mutations (OS: 1.57 [1.06, 2.32], p = .02), with liver metastases (OS: 1.16 [1.02,1.32], p = .02) and antibiotics (OS: 3.13 [1.25,7.84], p < .001; PFS: 2.54 [1.38, 4.68], p = .003). CONCLUSION: The results of this umbrella meta-analysis first supported pre-existing understandings of the relationship between beneficial and adverse factors with the efficacy of ICI therapy. In addition, the overexpression of PD-L1 may adversely affect patients.


The umbrella meta-analysis first supported pre-existing understandings of the relationship between beneficial and adverse factors with the efficacy of immune checkpoint inhibitor therapy.This study found three factors that are not conducive to the efficacy of immune checkpoint inhibitor: epidermal growth factor receptor mutations, with liver metastases and antibiotics.We found the overexpression of PD-L1 may adversely affect patients.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
18.
J Nanobiotechnology ; 21(1): 113, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978136

RESUMEN

BACKGROUND: Hypertrophic scars (HS) affect millions of people each year and require better treatment strategies. Bacterial extracellular vesicles (EVs) are advantaged by low cost and high yield which was commonly used in the treatment of diseases. Here, we investigated the therapeutic efficacy of EVs obtained from Lactobacillus druckerii in hypertrophic scar. In vitro, the effects of Lactobacillus druckerii-derived EVs (LDEVs) on Collagen I/III and α-SMA in fibroblasts obtained from HS. In vivo, a scleroderma mouse model was used to investigate the effects of LDEVs on fibrosis. The impact of LDEVs on excisional wound healing was explored. The different proteins between PBS and LDEVs treated fibroblasts derived from hypertrophic scar were studied by untargeted proteomic analysis. RESULTS: In vitro, LDEVs treatment significantly inhibited the expression of Collagen I/III and α-SMA and cell proliferation of fibroblasts derived from HS. In vivo, LDEVs withdrawn the hypertrophic scar formation in scleroderma mouse model and decreased the expression of α-SMA. LDEVs promoted the proliferation of skin cells, new blood vessel formation and wound healing in excisional wound healing mice model. Moreover, proteomics has shown that LDEVs inhibit hypertrophic scar fibrosis through multiple pathways. CONCLUSIONS: Our results indicated that Lactobacillus druckerii-derived EVs has the potential application in the treatment of hypertrophic scars and any other fibrosis diseases.


Asunto(s)
Cicatriz Hipertrófica , Vesículas Extracelulares , Animales , Ratones , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Lactobacillus/metabolismo , Proteómica , Colágeno Tipo I/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo
19.
Bioact Mater ; 26: 323-336, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36950152

RESUMEN

Chronic diabetic wounds remain a globally recognized clinical challenge. They occur due to high concentrations of reactive oxygen species and vascular function disorders. A promising strategy for diabetic wound healing is the delivery of exosomes, comprising bioactive dressings. Metformin activates the vascular endothelial growth factor pathway, thereby improving angiogenesis in hyperglycemic states. However, multifunctional hydrogels loaded with drugs and bioactive substances synergistically promote wound repair has been rarely reported, and the mechanism of their combinatorial effect of exosome and metformin in wound healing remains unclear. Here, we engineered dual-loaded hydrogels possessing tissue adhesive, antioxidant, self-healing and electrical conductivity properties, wherein 4-armed SH-PEG cross-links with Ag+, which minimizes damage to the loaded goods and investigated their mechanism of promotion effect for wound repair. Multiwalled carbon nanotubes exhibiting good conductivity were also incorporated into the hydrogels to generate hydrogen bonds with the thiol group, creating a stable three-dimensional structure for exosome and metformin loading. The diabetic wound model of the present study suggests that the PEG/Ag/CNT-M + E hydrogel promotes wound healing by triggering cell proliferation and angiogenesis and relieving peritraumatic inflammation and vascular injury. The mechanism of the dual-loaded hydrogel involves reducing the level of reactive oxygen species by interfering with mitochondrial fission, thereby protecting F-actin homeostasis and alleviating microvascular dysfunction. Hence, we propose a drug-bioactive substance combination therapy and provide a potential mechanism for developing vascular function-associated strategies for treating chronic diabetic wounds.

20.
Redox Biol ; 62: 102655, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36913799

RESUMEN

BACKGROUND: Sepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Injury of pulmonary microvascular endothelial cells (PMVECs) induced by excessive inflammation plays an important role in sepsis acute lung injury. This study is meant to explore the protective effect and mechanism of ADSCs exosomes on excessive inflammation PMVECs injury. RESULTS: We successfully isolated ADSCs exosomes, the characteristic of which were confirmed. ADSCs exosomes reduced excessive inflammatory response induced ROS accumulation and cell injury in PMVECs. Besides, ADSCs exosomes inhibited excessive inflammatory response induced ferroptosis while upregulated expression of GPX4 in PMVECs. And further GPX4 inhibition experiments revealed that ADSCs exosomes alleviated inflammatory response induced ferroptosis via upregulating GPX4. Meanwhile, ADSCs exosomes could increase the expression and nucleus translocation of Nrf2, while decrease the expression of Keap1. miRNA analysis and further inhibition experiments verified that specific delivery of miR-125b-5p by ADSCs exosomes inhibited Keap1 and alleviated ferroptosis. In CLP induced sepsis model, ADSCs exosomes could relieve the lung tissue injury and reduced the death rate. Besides, ADSCs exosomes alleviated oxidative stress injury and ferroptosis of lung tissue, while remarkably increase expression of Nrf2 and GPX4. CONCLUSION: Collectively, we illustrated a novel potentially therapeutic mechanism that miR-125b-5p in ADSCs exosomes could alleviate the inflammation induced PMVECs ferroptosis in sepsis induced acute lung injury via regulating Keap1/Nrf2/GPX4 expression, hence improve the acute lung injury in sepsis.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Ferroptosis , MicroARNs , Sepsis , Humanos , Lesión Pulmonar Aguda/genética , Células Endoteliales/metabolismo , Exosomas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sepsis/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...