Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Front Vet Sci ; 11: 1401392, 2024.
Article En | MEDLINE | ID: mdl-38846788

Salmonella enterica serovar Gallinarum (S. gallinarum) is an important host-specific pathogen that causes fowl typhoid, a severe systemic, septicemic, and fatal infection, in chickens. S. gallinarum causes high morbidity and mortality in chickens and poses a significant burden and economic losses to the poultry industry in many developing countries. However, the virulence factors and mechanisms of S. gallinarum-induced systemic infection in chickens remain poorly understood. In this study, we constructed a Salmonella pathogenicity island-14 (SPI-14) mutant strain (mSPI-14) of S. gallinarum and evaluated the pathogenicity of mSPI-14 in the chicken systemic infection model. The mSPI-14 exhibited the same level of bacterial growth and morphological characteristics but significantly reduced resistance to bile acids compared with the wild-type (WT) strain in vitro. The virulence of mSPI-14 was significantly attenuated in the chicken oral infection model in vivo. Chickens infected with WT showed typical clinical symptoms of fowl typhoid, with all birds succumbing to the infection within 6 to 9 days post-inoculation, and substantial increases in bacterial counts and significant pathological changes in the liver and spleen were observed. In contrast, all mSPI-14-infected chickens survived, the bacterial counts in the organs were significantly lower, and no significant pathological changes were observed in the liver and spleen. The expression of interleukin (IL)-1ß, IL-12, CXCLi1, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in the liver of mSPI-14-infected chickens were significantly lower than those in the WT-infected chickens. These results indicate that SPI-14 is a crucial virulence factor in systemic infection of chickens, and avirulent mSPI-14 could be used to develop a new attenuated live vaccine to prevent S. gallinarum infection in chickens.

2.
Microbiol Spectr ; : e0191323, 2023 Sep 29.
Article En | MEDLINE | ID: mdl-37772855

The dissemination of Staphylococcus aureus in the pork production chain is a major food safety concern. Abattoirs can serve both as disruptor and transmitter for S. aureus. In this study, we conducted a systematic genomic epidemiology research on the prevalence, heterogeneity, and transmission of S. aureus in 3,638 samples collected from four pig abattoirs in Hubei province, China. Our findings revealed substantial heterogeneity between S. aureus recovered from samples collected at upstream (from stunning step to head-removal step) and downstream (from splitting step to chilling step) locations within the slaughter process. Overall, 966 (26.6%) samples were positive for S. aureus, with significantly higher overall prevalence for upstream samples (29.0%, 488/1,681) compared to downstream samples (24.4%, 478/1,957). Antimicrobial susceptibility testing demonstrated that the isolates from the upstream exhibited significantly higher resistance proportions to different antimicrobials than those from the downstream. Whole-genome sequencing of 126 isolates revealed that ST398 (32.9%, 23/70) and ST9 (22.9%, 16/70) were more common among upstream isolates, while ST7 (35.7%, 20/56) and ST97 (28.6%, 16/56) were most frequently observed among downstream isolates. Additionally, molecular characterization analysis demonstrated that upstream isolates possessed significantly higher enterotoxigenic potential, more antimicrobial resistance genes, and S. aureus pathogenicity islands than downstream isolates. Notably, we discovered that enterotoxigenic S. aureus could be transmitted across different slaughter stages, with knives, water, and air serving as vectors. Although slaughtering processes had a substantial effect on reducing the food safety risk posed by enterotoxigenic S. aureus, the possibility of its widespread transmission should not be disregarded. IMPORTANCE Staphylococcus aureus (S. aureus) is one of the most important foodborne pathogens, and can cause foodborne poisoning by producing enterotoxins. Pork is a preferable reservoir and its contamination often occurs during the slaughter process. Our findings revealed significant differences in the prevalence, antimicrobial resistance, and enterotoxigenic potential between the upstream and downstream isolates within the slaughter process. Also, it is imperative not to overlook enterotoxigenic S. aureus transmitted across all stages of the slaughter process, with notable vectors being knives, water, and air. These findings hold significant implications for policy-makers to reassess their surveillance projects, and underscore the importance of implementing effective control measures to minimize the risk of S. aureus contamination in pork production. Moreover, we provide a more compelling method of characterizing pathogen transmission based on core-SNPs of bacterial genomes.

3.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article En | MEDLINE | ID: mdl-38203566

Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Staphylococcus aureus , Virulence , Exotoxins
4.
Front Microbiol ; 13: 953720, 2022.
Article En | MEDLINE | ID: mdl-35910608

With the increasing bacterial resistance to traditional antibiotics, there is an urgent need for the development of alternative drugs or adjuvants of antibiotics to enhance antibacterial efficiency. The combination of antimicrobial peptides (AMPs) and traditional antibiotics is a potential alternative to enhance antibacterial efficiency. In this study, we investigated the synergistic bactericidal effect of AMPs, including chicken (CATH-1,-2,-3, and -B1), mice (CRAMP), and porcine (PMAP-36 and PR-39) in combination with conventional antibiotics containing ampicillin, tetracycline, gentamicin, and erythromycin against Staphylococcus aureus, Salmonella enteritidis, and Escherichia coli. The results showed that the minimum bactericidal concentration (MBC) of CATH-1,-3 and PMAP-36 was lower than 10 µM, indicating that these three AMPs had good bacterial activity against S. aureus, S. enteritidis, and E. coli. Then, the synergistic antibacterial activity of AMPs and antibiotics combination was determined by the fractional bactericidal concentration index (FBCI). The results showed that the FBCI of AMPs (CATH-1,-3 and PMAP-36) and erythromycin was lower than 0.5 against bacterial pathogens, demonstrating that they had a synergistic bactericidal effect. Furthermore, the time-killing kinetics of AMPs (CATH-1,-3 and PMAP-36) in combination with erythromycin showed that they had a continuous killing effect on bacteria within 3 h. Notably, the combination showed lower hemolytic activity and cytotoxicity to mammal cells compared to erythromycin and peptide alone treatment. In addition, the antibacterial mechanism of CATH-1 and erythromycin combination against E. coli was studied. The results of the scanning electron microscope showed that CATH-1 enhanced the antibacterial activity of erythromycin by increasing the permeability of bacterial cell membrane. Moreover, the results of bacterial migration movement showed that the combination of CATH-1 and erythromycin significantly inhibits the migration of E. coli. Finally, drug resistance analysis was performed and the results showed that CATH-1 delayed the emergence of E. coli resistance to erythromycin. In conclusion, the combination of CATH-1 and erythromycin has synergistic antibacterial activity and reduces the emergence of bacterial drug resistance. Our study provides valuable information to develop AMPs as potential substitutes or adjuvants for traditional antibiotics.

5.
Front Microbiol ; 13: 880932, 2022.
Article En | MEDLINE | ID: mdl-35694286

Salmonella enterica serovar Gallinarum (S. Gallinarum) is a host-specific pathogen causing fowl typhoid, a severe systemic infection in poultry, which leads to substantial economic losses due to high morbidity and mortality in many developing countries. However, less is known about the pathogenic characteristics and mechanism of S. Gallinarum-induced systemic infection in chickens. In this study, we deleted the S. Gallinarum UDP-N-acetylglucosamine-1-phosphate transferase gene, which contributes to the biosynthesis of enterobacterial common antigen (ECA), and studied the pathogenicity of this wecB::Cm strain in a chicken model of systemic infection. The wecB::Cm mutant strain showed comparable growth but lower resistance to bile acid and nalidixic acid than the wild-type strain in vitro. In the oral infection model of chickens, the virulence of the wecB::Cm strain was significantly attenuated in vivo. Chickens infected with wild-type strain showed typical clinical signs and pathological changes of fowl typhoid and died between 6 and 9 days post-infection, and the bacteria rapidly disseminated to systemic organs and increased in the livers and spleens. In contrast, the wecB::Cm mutant strain did not cause chicken death, there were no significant clinical changes, and the bacterial numbers in the liver and spleen of the chickens were significantly lower than those of the chickens infected with the wild-type strain. In addition, the expression of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and CXCLi1 in the livers of wecB::Cm-infected chickens was significantly lower than that of the chickens infected with the wild-type strain. Furthermore, the attenuated wecB::Cm strain could persistently colonize the liver and spleen at low levels for up to 25 days post-infection and could induce a protective immune response in the chickens. These results indicate that the wecB gene is an important virulence factor of S. Gallinarum in the chicken model of systemic infection, and the avirulent wecB::Cm mutant could possibly be used as a live-attenuated vaccine strain for controlling fowl typhoid.

6.
Front Microbiol ; 13: 898559, 2022.
Article En | MEDLINE | ID: mdl-35694317

Streptococcus pneumoniae is an invasive pathogen with high morbidity and mortality in the immunocompromised children and elderly. NOD-like receptor family pyrin domain containing 6 (NLRP6) plays an important role in the host innate immune response against pathogen infections. Our previous studies have shown that NLRP6 plays a negative regulatory role in host defense against S. pneumoniae, but the underlying mechanism is still unclear. The further negative regulatory role of NLRP6 in the host was investigated in this study. Our results showed that NLRP6-/- mice in the lung had lower bacterial burdens after S. pneumoniae infection and expressed higher level of tight junction (TJ) protein occludin compared to WT mice, indicating the detrimental role of NLRP6 in the host defense against S. pneumoniae infection. Transcriptome analysis showed that genes related to leukocytes migration and recruitment were differentially expressed between wild-type (WT) and NLRP6 knockout (NLRP6-/-) mice during S. pneumoniae infection. Also, NLRP6-/- mice showed higher expression of chemokines including C-X-C motif chemokine ligand 1 (CXCL1) and 2 (CXCL2) and lower gene expression of complement C3a receptor 1 (C3aR1) and P-selectin glycoprotein ligand-1 (PSGL-1) which are the factors that inhibit the recruitment of neutrophils. Furthermore, NLRP6-/- neutrophils showed increased intracellular bactericidal ability and the formation of neutrophil extracellular traps (NETs) during S. pneumoniae infection. Taken together, our study suggests that NLRP6 is a negative regulator of neutrophil recruitment and function during S. pneumoniae infection. Our study provides a new insight to develop novel strategies to treat invasive pneumococcal infection.

7.
Front Microbiol ; 13: 765317, 2022.
Article En | MEDLINE | ID: mdl-35369432

Non-menstrual toxic shock syndrome (non-mTSS) is a life-threatening disease caused by Staphylococcus aureus strains producing superantigens, such as staphylococcal enterotoxins A, B, C, and toxic shock syndrome toxin-1 (TSST-1). However, little is known about why the TSS cases are rare, although S. aureus strains frequently carry a tst gene, which encodes TSST-1. To answer this question, the amount of TSST-1 produced by 541 clinical isolates was measured in both the presence and absence of serum supplementation to growth media. Then a set of S. aureus strains with similar genetic backgrounds isolated from patients presenting with non-mTSS and those with clinical manifestations other than non-mTSS was compared for their TSST-1 inducibility by human serum, and their whole-genome sequences were determined. Subsequently, the association of mutations identified in the tst promoter of non-mTSS strains with TSST-1 inducibility by human serum was evaluated by constructing promoter replacement mutants and green fluorescent protein (GFP) reporter recombinants. Results showed that 39 out of 541 clinical isolates (7.2%), including strains isolated from non-mTSS patients, had enhanced production of TSST-1 in the presence of serum. TSST-1 inducibility by human serum was more clearly seen in non-mTSS strains of clonal complex (CC)-5. Moreover, the whole-genome sequence analysis identified a set of sequence variations at a putative SarA-binding site of the tst promoter. This sequence variation was proven to be partially responsible for the induction of TSST-1 production by human serum. We conclude that the onset of staphylococcal toxic shock syndrome caused by TSST-1-producing CC-5 strains seem at least partially initiated by serum induction of TSST-1, which is regulated by the mutation of putative SarA-binding site at the tst promoter.

8.
Dalton Trans ; 51(8): 3331-3340, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35137742

Poly(ionic liquid)s (PILs) have gained widespread attention in recent years due to their excellent properties similar to both ionic liquids and polymers. However, their further applications are limited because abundant and flexible ions easily block nanopores in the PIL catalysts, thus blocking the active sites and ultimately leading to decreased catalytic activity. This work reports the synthesis of a PIL/graphene composite catalyst (iPOP-ZnTPy@GNFs) based on an in situ surface preparation strategy, which effectively controlled the particle size and dispersion state of ionic liquids. The iPOP-ZnTPy@GNFs exhibited a larger surface area and more exposed active sites, which intensified the catalytic activity in the CO2 cycloaddition reaction with propylene oxide with almost double the reaction rate as compared to that of iPOP-ZnTPy-2 at 100 °C and S/C = 1000. As expected, the iPOP-ZnTPy@GNF catalyst efficiently converted epoxides to cyclic carbonates at room temperature or atmospheric pressure, which can significantly reduce the process cost. In addition, iPOP-ZnTPy@GNFs exhibited excellent broad substrate scope, catalytic diversity, and remarkable reusability. The reaction mechanism of CO2 cycloaddition was studied via density functional theory calculations and was validated by experimental findings. This work provides a feasible method for improving the utilization of active sites in PILs as a highly robust catalyst for CO2 cycloaddition and can be further extended to other types of catalytic reactions in practical applications.

9.
Int J Food Microbiol ; 357: 109366, 2021 Nov 02.
Article En | MEDLINE | ID: mdl-34454396

Staphylococcal enterotoxins (SEs) produced by enterotoxigenic Staphylococcus aureus in food cause staphylococcal food poisoning. We recently reported a foodborne outbreak due to S. aureus harboring new SE/SE-like (SEl) genes (seg, sei, sem, sen, seo, and selu) related to enterotoxin gene cluster (egc) 2 as with other research groups. However, the pathogenicity of SEs production remains unclear. Therefore, we herein investigated egc2-related SEs production from S. aureus isolates and leftover food items during a foodborne outbreak using a sandwich enzyme-linked immunosorbent assay suitable for the quantification of SEs. S. aureus isolates produced markedly high levels of egc2-related SEs, and the leftover food item "Sushi" contained SEs over the toxin dose that causes food poisoning symptoms. A representative isolate was subjected to whole-genome sequencing. The isolate was homologous with previously reported ST45 strains, particularly the unique genomic island νSaß structure mostly consisting of egc2. The present study indicates that egc2-related SEs are food poisoning causative agents based on high SE production levels within an actual foodborne outbreak.


Enterotoxins , Staphylococcal Food Poisoning , DNA Primers , Disease Outbreaks , Enterotoxins/analysis , Enterotoxins/genetics , Food Microbiology , Humans , Polymerase Chain Reaction , Staphylococcal Food Poisoning/epidemiology , Staphylococcus aureus/genetics
10.
J Vet Med Sci ; 83(7): 1120-1127, 2021 Jul 13.
Article En | MEDLINE | ID: mdl-34039784

Staphylococcus aureus produces staphylococcal enterotoxins (SEs) and causes food poisoning. It is known that almost all SE-encoding genes are present on various types of mobile genetic elements and can mobilize among S. aureus populations. Further, plasmids comprise one of SE gene carriers. Previously, we reported novel SEs, SES and SET, harbored by the plasmid pF5 from Fukuoka5. In the present study, we analyzed the distribution of these SEs in various S. aureus isolates in Japan. We used 526 S. aureus strains and found 311 strains positive for at least one SE/SE-like toxin gene, but only two strains (Fukuoka5 and Hiroshima3) were positive for ses and set among the specimens. We analyzed two plasmids (pF5 and pH3) from these strains and found that they were different. Whereas these plasmids partially shared similar sequences involved in the ser/selj/set/ses gene cluster, other sequences were different. A comparison of these plasmids with those deposited in the NCBI database revealed that only one plasmid had the ser/selj/set/ses cluster with a stop mutation in set similar to that in pH3. In addition, the chromosomes of Fukuoka5 and Hiroshima3, positive for ses and set, were classified into different genotypes. Despite the low rate of gene positivity for these SEs, it is suggested that there is diversity in plasmids and strains carrying these two SEs. Consequently, regarding the entire feature of SE prevalence, we improved the multiplex PCR detection method for the SE superfamily to obtain further insight.


Staphylococcal Food Poisoning , Staphylococcal Infections , Animals , Enterotoxins/genetics , Food Microbiology , Japan/epidemiology , Staphylococcal Food Poisoning/veterinary , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics
11.
J Vet Med Sci ; 83(7): 1147-1154, 2021 Jul 28.
Article En | MEDLINE | ID: mdl-34039786

Salmonella enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum) is a host-specific pathogen causing systemic infection in poultry, which leads to significant economic losses due to high mortality. However, little is known about the dynamic process of systemic infection and pathogenic characteristics of S. Gallinarum in chickens. In the present study, we developed an oral infection model that reproduces the pathology of S. Gallinarum and clarified the host immune response of the infected chickens. Chickens at 20 days of age orally inoculated at a dose of 108 colony forming unit (CFU) showed typical clinical signs of fowl typhoid and died between 6 and 10 days post infection. The inoculated S. Gallinarum rapidly disseminated to multple organs and the bacterial counts increased in the liver and spleen at 3 days post infection. Pathological changes associated wirh inflammation in the liver and spleen became apparent at 4 days post infection, and increased expression of interferon (IFN)-γ and interleuikin (IL)-12 in the liver and spleen did not observed until 3 days post infection. These results indicate that S. Gallinarum rapidly spread to entire body through intestine, and the low-level of inflammatory responses in the liver during the early stage of infection may contribute to rapid, systemic dissemination of the bacteria. Our infection model and findings will contribute to the better understanding of the pathogenic mechanism of S. Gallinarum, and provide new insights into the prevention and control of fowl typhoid.


Poultry Diseases , Salmonella Infections, Animal , Salmonella enterica , Animals , Chickens , Immunity , Serogroup
12.
Front Immunol ; 12: 649235, 2021.
Article En | MEDLINE | ID: mdl-34017331

Staphylococcus aureus (S. aureus) is an important zoonotic food-borne pathogen causing severe invasive infections, such as sepsis, pneumonia, food poisoning, toxic shock syndrome and autoimmune diseases. Staphylococcal enterotoxin O (SEO) is a new type of enterotoxins of S. aureus with superantigenic and emetic activity. However, it is still unclear about SEO-induced host inflammatory response. Therefore, the mechanism of SEO-induced interleukin-1ß (IL-1ß) secretion in mouse neutrophils was investigated in this study. Our results showed that recombinant SEO had superantigenic activity with high level of gamma interferon (IFN-γ) production in mouse spleen cells and induced inflammatory cytokines expression including IL-1α, IL-1ß, IL-6 and TNF-α in neutrophils under the action of ATP. In addition, SEO-induced IL-1ß secretion was dependent on activation of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways. However, SEO-induced IL-1ß secretion was abolished in the neutrophils of NLRP3-/- mice compared with those of wild type mice, indicating that activation of NLRP3 inflammasome mediated IL-1ß secretion during neutrophils stimulation with SEO under the action of ATP. Moreover, this process of SEO+ATP-induced IL-1ß secretion was dependent on potassium (K+) efflux. Taken together, our study suggests that activation of TLR4/JNK/NLRP3 inflammasome signaling pathway mediate maturation and secretion of IL-1ß and provides a new insight on S. aureus virulence factor-induced host immune response.


Adenosine Triphosphate/metabolism , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophils/immunology , Staphylococcal Infections/immunology , Animals , Disease Models, Animal , Enterotoxins/immunology , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neutrophils/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/immunology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Virulence Factors/immunology
13.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Article En | MEDLINE | ID: mdl-33664145

Here, we report the complete genome sequence of Staphylococcus aureus strain 834, which was isolated from a septic patient in Japan and showed strong virulence and methicillin resistance. The complete genome consists of a 2,838,668-bp chromosome and a 24,653-bp plasmid. Genome annotation predicts 2,670 coding sequences, 16 rRNAs, and 61 tRNAs.

14.
Foodborne Pathog Dis ; 18(10): 712-717, 2021 10.
Article En | MEDLINE | ID: mdl-33493405

Salmonella is considered one of the leading causes for foodborne diseases in humans. Pork and its products contaminated with Salmonella are increasingly recognized as an important source of human salmonellosis. The aim of this study was to investigate the antimicrobial resistance and prevalence of integrons in Salmonella isolates from pig farms. In total, 92 of 724 (12.7%) samples were Salmonella-positive, including 64 (15.0%) from fecal samples, 27 (12.6%) from floor samples, 1 (4.5%) from water samples, and 0 from feed and air samples. These isolates showed the highest resistance to tetracycline (85.9%), followed by trimethoprim (67.4%), ampicillin (60.9%), and chloramphenicol (51.1%). In addition, 51 isolates carried the complete class 1 integron, most of which (42/51) harbored antibiotic resistance cassettes. A total of six gene cassettes including orfF, est-X, dfrA1+aadA1, aadA1, dfrA12+aadA2, and sat were identified, in which the most prevalent one was orfF (29.4%). Furthermore, all 19 class 1 integron-positive isolates harboring dfr genes showed resistance to trimethoprim (SXT), suggesting that the trimethoprim resistance gene (dfr) may contribute to the emergence of SXT resistance phenotype. Therefore, considering the significance of integrons and related resistance genes for public health, special measures should be taken to control Salmonella spp. on the pig farms and to prevent spread of integrons and associated resistance genes.


Anti-Bacterial Agents , Integrons , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Farms , Integrons/genetics , Salmonella/genetics , Swine
15.
Toxins (Basel) ; 13(1)2021 01 18.
Article En | MEDLINE | ID: mdl-33477467

Staphylococcus aureus is a Gram-positive opportunistic pathogen which causes infections in a variety of vertebrates. Virulence factors are the main pathogenesis of S. aureus as a pathogen, which induce the host's innate and adaptive immune responses. Toxic shock syndrome toxin 1 (TSST-1) is one of the most important virulence factors of S. aureus. However, the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) in TSST-1-induced innate immune response is still unclear. Here, purified recombinant TSST-1 (rTSST-1) was prepared and used to stimulate mouse peritoneal macrophages. The results showed that under the action of adenosine-triphosphate (ATP), rTSST-1 significantly induced interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) production in mouse macrophages and the production was dose-dependent. In addition, rTSST-1+ATP-stimulated cytokine production in macrophage depends on the activation of toll like receptor 4 (TLR4), but not TLR2 on the cells. Furthermore, the macrophages of NLRP3-/- mice stimulated with rTSST-1+ATP showed significantly low levels of IL-1ß production compared to that of wild-type mice. These results demonstrated that TSST-1 can induce the expression of inflammatory cytokines in macrophages via the activation of the TLR4 and NLRP3 signaling pathways. Our study provides new information about the mechanism of the TSST-1-inducing host's innate immune responses.


Bacterial Toxins/immunology , Cytokines/immunology , Enterotoxins/immunology , Inflammasomes/immunology , Macrophages, Peritoneal/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Superantigens/immunology , Animals , Bacterial Proteins/immunology , Dose-Response Relationship, Drug , Host-Pathogen Interactions , Immunity, Innate , Interleukin-1beta/immunology , Mice , Mice, Knockout , Recombinant Proteins/immunology , Signal Transduction , Staphylococcus aureus/immunology , Toll-Like Receptor 4/immunology , Virulence Factors/immunology
16.
Food Microbiol ; 92: 103588, 2020 Dec.
Article En | MEDLINE | ID: mdl-32950172

Staphylococcal enterotoxins (SEs) are extracellular proteins, produced mainly by Staphylococcus aureus, which cause staphylococcal food poisoning (SFP) when ingested. Here, a novel SE was identified from two strains, which were identified as the causative microbes of the SFP outbreak that occurred in Tokyo in 2004. Both strains harbored the SEA gene, but its production was lower than that of other SEA-producing SFP isolates. Whole-genome sequencing analysis demonstrated that both strains harbored a SE-like gene besides sea. Phylogenetic analysis revealed that the amino acid sequence deduced from the SE-like gene belonged to the SEB group. Therefore, this gene was presumed to be a novel SE gene and termed "SE02." The stability of SE02 against heating and proteolytic digestions was a little different from that of SEA. SE02 has both superantigenic and emetic bioactivities. Namely, SE02 activated mouse splenocytes and exhibited emetic activity in the common marmoset. SE02 mRNA was highly expressed in both isolates during the exponential phase of cultivation. In addition, SE02 protein was produced at 20 °C and 25 °C, which reflects the actual situation of SFP. SE02 appears to be a novel emetic toxin that was likely the causative toxin in combination with SEA in the SFP outbreak.


Enterotoxins/toxicity , Staphylococcal Food Poisoning/microbiology , Staphylococcus aureus/metabolism , Animals , Callithrix , Disease Outbreaks , Enterotoxins/genetics , Enterotoxins/metabolism , Female , Genome, Bacterial , Humans , Mice , Mice, Inbred C57BL , Phylogeny , Staphylococcal Food Poisoning/epidemiology , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Tokyo/epidemiology
17.
BMC Vet Res ; 15(1): 456, 2019 Dec 18.
Article En | MEDLINE | ID: mdl-31852466

BACKGROUND: Salmonella is one of the most important foodborne pathogens, causing outbreaks of human salmonellosis worldwide. Owing to large scales of consumption markets, pork and poultry that contaminated by Salmonella could pose a tremendous threat to public health. The aim of this study was to investigate the contamination of Salmonella from chicken, pork and the environment in slaughtering and retail processes in Chongqing, China. RESULTS: A total of 115 Salmonella isolates were recovered from 1112 samples collected from pork, chicken and the environment. Compared with the isolation rate of samples from chicken (9.50%) and the environment (6.23%), samples from pork had a significant higher isolation rate (44.00%). The isolation rates in slaughterhouses (10.76%) and in supermarkets (10.07%) showed no statistical difference. Thirty different serotypes were identified among all the isolates. S. Derby (n = 26), S. London (n = 16) and S. Rissen (n = 12) were the dominant serotypes. Antimicrobial susceptibility testing revealed that 73.04% isolates were resistant to tetracycline, followed by 66.96% to ampicillin and 59.13% to doxycycline. More than half (50.43%) of the isolates were multidrug resistant (MDR), and most of the MDR isolates were from supermarkets. Multilocus sequence typing results showed 24 out of 115 isolates were ST40, which was the most prevalent. Furthermore, isolates from supermarkets had 20 different sequence types while isolates from slaughterhouses only had 8 different sequence types. CONCLUSION: Our study highlighted that Salmonella was more frequently isolated in pork production chain than that in chicken. Compared with isolates from slaughterhouses, isolates from supermarkets had more MDR profiles and represented a wider range of serotypes and sequence types, indicating that the retail process had more diverse sources of Salmonella contamination than that of slaughtering process.


Chickens/microbiology , Pork Meat/microbiology , Salmonella/genetics , Abattoirs , Animals , China , Drug Resistance, Bacterial , Environmental Microbiology , Food Handling , Food Microbiology , Multilocus Sequence Typing , Salmonella/drug effects , Salmonella/isolation & purification , Serotyping , Sus scrofa
18.
Infect Immun ; 87(10)2019 10.
Article En | MEDLINE | ID: mdl-31358568

Development of long-term memory is crucial for vaccine-induced adaptive immunity against infectious diseases such as Staphylococcus aureus infection. Toxic shock syndrome toxin 1 (TSST-1), one of the superantigens produced by S. aureus, is a possible vaccine candidate against infectious diseases caused by this pathogen. We previously reported that vaccination with less toxic mutant TSST-1 (mTSST-1) induced T helper 17 (Th17) cells and elicited interleukin-17A (IL-17A)-mediated protection against S. aureus infection 1 week after vaccination. In the present study, we investigated the host immune response induced by mTSST-1 vaccination in the memory phase, 12 weeks after the final vaccination. The protective effect and IL-17A production after vaccination with mTSST-1 were eliminated because of IL-10 production. In the presence of IL-10-neutralizing monoclonal antibody (mAb), IL-17A production was restored in culture supernatants of CD4+ T cells and macrophages sorted from the spleens of vaccinated mice. Vaccinated mice treated with anti-IL-10 mAb were protected against systemic S. aureus infection in the memory phase. From these results, it was suggested that IL-10 produced in the memory phase suppresses the IL-17A-dependent vaccine effect through downregulation of IL-17A production.


Bacterial Toxins/genetics , Enterotoxins/genetics , Interleukin-10/genetics , Interleukin-17/genetics , Staphylococcal Infections/prevention & control , Staphylococcal Vaccines/genetics , Staphylococcus aureus/drug effects , Superantigens/genetics , Th17 Cells/drug effects , Animals , Antibodies, Neutralizing/pharmacology , Bacterial Toxins/administration & dosage , Bacterial Toxins/biosynthesis , Cloning, Molecular , Enterotoxins/administration & dosage , Enterotoxins/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Immunologic Memory/drug effects , Interleukin-10/antagonists & inhibitors , Interleukin-10/immunology , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Recombinant Proteins/administration & dosage , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Staphylococcal Vaccines/administration & dosage , Staphylococcal Vaccines/biosynthesis , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Superantigens/administration & dosage , Superantigens/biosynthesis , Th17 Cells/immunology , Vaccination , Vaccines, Synthetic
20.
PLoS Pathog ; 15(5): e1007803, 2019 05.
Article En | MEDLINE | ID: mdl-31112582

Staphylococcal enterotoxins (SEs) produced by Staphylococcus aureus are known as causative agents of emetic food poisoning. We previously demonstrated that SEA binds with submucosal mast cells and evokes mast cell degranulation in a small emetic house musk shrew model. Notably, primates have been recognized as the standard model for emetic assays and analysis of SE emetic activity. However, the mechanism involved in SEA-induced vomiting in primates has not yet been elucidated. In the present study, we established common marmosets as an emetic animal model. Common marmosets were administered classical SEs, including SEA, SEB and SEC, and exhibited multiple vomiting responses. However, a non-emetic staphylococcal superantigen, toxic shock syndrome toxin-1, did not induce emesis in these monkeys. These results indicated that the common marmoset is a useful animal model for assessing the emesis-inducing activity of SEs. Furthermore, histological analysis uncovered that SEA bound with submucosal mast cells and induced mast cell degranulation. Additionally, ex vivo and in vivo pharmacological results showed that SEA-induced histamine release plays a critical role in the vomiting response in common marmosets. The present results suggested that 5-hydroxytryptamine also plays an important role in the transmission of emetic stimulation on the afferent vagus nerve or central nervous system. We conclude that SEA induces histamine release from submucosal mast cells in the gastrointestinal tract and that histamine contributes to the SEA-induced vomiting reflex via the serotonergic nerve and/or other vagus nerve.


Emetics/toxicity , Enterotoxins/toxicity , Histamine Release/drug effects , Mast Cells/metabolism , Staphylococcal Food Poisoning/etiology , Staphylococcus/pathogenicity , Vomiting/chemically induced , Animals , Callithrix , Disease Models, Animal , Intestines/drug effects , Intestines/pathology , Mast Cells/drug effects , Mast Cells/pathology , Reflex , Staphylococcal Food Poisoning/metabolism , Staphylococcal Food Poisoning/pathology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Vomiting/microbiology
...