Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Adv Exp Med Biol ; 1445: 91-99, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38967752

RESUMEN

Liver is the largest internal organ of the body with vital functions. In addition to its endocrine and exocrine activities, liver also plays a pivotal role in the immune system, including haematopoietic functions. Liver parenchymal cells, which are epithelial cells, have been found to possess innate immune functions by expressing pattern-recognition receptors (PRRs), producing complement components, and secreting cytokines. Intriguingly, in recent years, it has been discovered that liver epithelial cells also produce immunoglobulins (Igs), which have long been thought to be produced exclusively by B cells. Notably, even liver epithelial cells from B lymphocyte-deficient mice, including SCID mice and µMT mice, could also produce Igs. Compelling evidence has revealed both the physiological and pathological functions of liver-derived Igs. For instance, liver epithelial cells-derived IgM can serve as a source of natural and specific antibodies that contribute to innate immune responses, while liver-produced IgG can act as a growth factor to promote cell proliferation and survival in normal hepatocytes and hepatocarcinoma. Similar to that in B cells, the toll-like receptor 9 (TLR9)-MyD88 signaling pathway is also actively involved in promoting liver epithelial cells to secrete IgM. Liver-derived Igs could potentially serve as biomarkers, prognostic indicators, and therapeutic targets in the clinical setting, particularly for liver cancers and liver injury. Nevertheless, despite significant advances, much remains unknown about the mechanisms governing Ig transcription in liver cells, as well as the detailed functions of liver-derived Igs and their involvement in diseases and adaptive immunity. Further studies are still needed to reveal these underlying, undefined issues related to the role of liver-derived Igs in both immunity and diseases.


Asunto(s)
Inmunidad Innata , Hígado , Animales , Hígado/metabolismo , Hígado/inmunología , Humanos , Inmunoglobulinas/metabolismo , Inmunoglobulinas/inmunología , Inmunoglobulinas/genética , Transducción de Señal , Inmunoglobulina M/inmunología , Inmunoglobulina M/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Hepatocitos/metabolismo , Hepatocitos/inmunología , Relevancia Clínica
2.
Eur J Immunol ; : e2350823, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922875

RESUMEN

Osteoclast-mediated bone erosion and deformation represent significant pathological features in rheumatoid arthritis (RA). Myeloid-derived suppressor cells (MDSCs) and B cells have emerged as key contributors to the progression of RA. Nevertheless, their involvement, especially the interaction in RA osteoclastogenesis remains elusive. In this study, our results revealed a marked expansion of MDSCs in RA patients, and importantly, their abundance was positively correlated with radiographic damage evaluated by the Sharp/van der Heijde score. Notably, MDSCs derived from both RA patients and arthritic mice exhibited a heightened propensity to differentiate into osteoclasts compared with those from healthy individuals. Intriguingly, we observed that B cells from RA patients could augment the osteoclastogenic potential of MDSCs, which was also observed in arthritic mice. The impact of B cells on MDSC-mediated osteoclastogenesis was found to be most pronounced in switched memory B cells, followed by CD21low B cells and naïve B cells. MDSCs from B-cell-deficient mice exhibited diminished capacity to differentiate into osteoclasts, accompanied by distinct gene expression profiles associated with osteoclastogenesis. Taken together, our findings suggested that MDSCs were important osteoclast precursors primed by B cells in RA, serving as novel therapeutic targets for the persistent disease.

3.
Thromb Res ; 238: 161-171, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723521

RESUMEN

The immune system is an emerging regulator of hemostasis and thrombosis. The concept of immunothrombosis redefines the relationship between coagulation and immunomodulation, and the Gas6/Tyro3-Axl-MerTK (TAM) signaling pathway builds the bridge across them. During coagulation, Gas6/TAM signaling pathway not only activates platelets, but also promotes thrombosis through endothelial cells and vascular smooth muscle cells involved in inflammatory responses. Thrombosis appears to be a common result of a Gas6/TAM signaling pathway-mediated immune dysregulation. TAM TK and its ligands have been found to be involved in coagulation through the PI3K/AKT or JAK/STAT pathway in various systemic diseases, providing new perspectives in the understanding of immunothrombosis. Gas6/TAM signaling pathway serves as a breakthrough target for novel therapeutic strategies to improve disease management. Many preclinical and clinical studies of TAM receptor inhibitors are in process, confirming the pivotal role of Gas6/TAM signaling pathway in immunothrombosis. Therapeutics targeting the TAM receptor show potential both in anticoagulation management and immunotherapy. Here, we review the immunological functions of the Gas6/TAM signaling pathway in coagulation and its multiple mechanisms in diseases identified to date, and discuss the new clinical strategies that may generated by these roles.


Asunto(s)
Hemostasis , Péptidos y Proteínas de Señalización Intercelular , Transducción de Señal , Trombosis , Humanos , Trombosis/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Animales , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Coagulación Sanguínea/inmunología
4.
Artículo en Inglés | MEDLINE | ID: mdl-38781519

RESUMEN

OBJECTIVES: The routine biomarkers for rheumatoid arthritis (RA), including anticyclic citrullinated peptide antibody (anti-CCP), rheumatoid factor (RF), immunoglobulin M (IgM), erythrocyte sedimentation rate (ESR), and C-reaction protein (CRP) have limited sensitivity and specificity. Scavenger receptor-A (SR-A) is a novel RA biomarker identified by our group recently, especially for seronegative RA. Here, we performed a large-scale multicentre study to further assess the diagnostic value of SR-A in combination with other biomarkers for RA. METHODS: The performance of SR-A in combination with other biomarkers for RA diagnosis was first revealed by a pilot study, and was further elucidated by a large-scale multicentre study. A total of 1129 individuals from 3 cohorts were recruited in the study, including RA patients, healthy controls, and patients with other common rheumatic diseases. Diagnostic properties were evaluated by the covariate-adjusted receiver-operating characteristic (AROC) curve, sensitivity, specificity and clinical association, respectively. RESULTS: Large-scale multicentre analysis showed that SR-A and anti-CCP dual combination was the optimal method for RA diagnosis, increasing the sensitivity of anti-CCP by 13% (87% vs 74%) while maintaining a specificity of 90%. In early RA patients, SR-A and anti-CCP dual combination also showed promising diagnostic value, increasing the sensitivity of anti-CCP by 7% (79% vs 72%) while maintaining a specificity of 94%. Moreover, SR-A and anti-CCP dual combination was correlated with ESR, IgM, and autoantibodies of RA patients, further revealing its clinical significance. CONCLUSION: SR-A and anti-CCP dual combination could potentially improve early diagnosis of RA, thus improving the prognosis and reducing mortality.

5.
Ann Med ; 56(1): 2309607, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38300888

RESUMEN

OBJECTIVE: Accumulating evidence suggests that differentially expressed circular RNAs (circRNAs) play critical roles in immune cells of systemic lupus erythematosus (SLE) patients. Hsa_circ_0000479 has been studied in the field of cancer and infection, whereas seldom studied in autoimmune diseases. The aim of this study was to investigate the role and clinical value of neutrophil hsa_circ_0000479 in SLE. METHODS: The expression levels of hsa_circ_0000479 in both healthy individuals and SLE patients' neutrophils were detected by qPCR and compared with those in peripheral blood mononuclear cells (PBMCs) . In addition, the correlation of hsa_circ_0000479 levels in neutrophils with the clinical and immunological features of SLE patients was also analysed. RESULTS: The expression levels of hsa_circ_0000479 in the patients with SLE were significantly higher in neutrophils than that of PBMCs, and also significantly higher than that in healthy controls (HCs). Moreover, the expression levels of hsa_circ_0000479 in neutrophils were negatively associated with absolute neutrophil count and complement 3 (C3), whereas positively correlated with anti-dsDNA and anti-nucleosome antibodies in SLE. In addition, SLE patients with higher levels of hsa_circ_0000479 demonstrated more several clinical manifestations, including Raynaud's phenomenon, alopecia and leucopenia. CONCLUSIONS: Hsa_circ_0000479 is up-regulated in neutrophils of SLE patients, and is also associated with several important laboratory indicators and clinical manifestations, suggesting that hsa_circ_0000479 in neutrophils was one of probable factors involved in the pathogenesis of SLE with potential clinical value.


Hsa_circ_0000479 was expressed in neutrophils and was considerably higher than that of PBMCs in SLE patients.The neutrophil hsa_circ_0000479 was correlated with laboratory parameters, including NEUT, C3, anti-dsDNA antibodies and AnuA, in addition to being associated with Raynaud's phenomenon, alopecia, and leucopenia in patients with SLE.Hsa_circ_0000479 in neutrophils may play an influential role in SLE patients and will be important to understand the pathogenesis, stratification and treatment in SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Neutrófilos , Humanos , Neutrófilos/metabolismo , Leucocitos Mononucleares/metabolismo , ARN Circular/metabolismo , Lupus Eritematoso Sistémico/genética , Recuento de Leucocitos
6.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38302261

RESUMEN

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Linfocitos B Reguladores , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/metabolismo , Linfocitos B Reguladores/metabolismo , Fenotipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
7.
Rheumatology (Oxford) ; 63(3): 846-855, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462532

RESUMEN

OBJECTIVE: Leukocyte Ig-like receptor A3 (LILRA3) is a soluble receptor belongs to the immunoglobulin superfamily. Our previous studies demonstrated that LILRA3 is a common genetic risk for multiple autoimmune diseases, including RA. Functional LILRA3 conferred increased risk of joint destruction in patients with early RA. We undertook this study to further investigate the pathological role of LILRA3 in joint inflammation of RA. METHODS: Soluble LILRA3 was measured by ELISA. LILRA3 plasmids were transfected into human fibroblast-like synoviocytes (FLSs) using electroporation. Activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was determined by western blots. Cytokine transcripts were quantified by real-time PCR. Migratory and invasive capacities of FLSs were evaluated using transwell migration and Matrigel invasion assays. FLS apoptosis was analysed using flow cytometry. Colocalization of LILRA3, LILRB1 and HLA-G in RA-FLSs was visualized by immunofluorescence staining. RESULTS: Soluble LILRA3 was specifically expressed in synovial fluid and serum LILRA3 was significantly increased and positively correlated with disease activity/severity in RA patients. LILRA3 induced an increased expression of IL-6, IL-8 and MMP3 in RA-FLSs. In vitro LILRA3 stimulation or overexpression promoted RA-FLS migration and invasion, and enhanced phosphorylation of ERK/JNK. Inhibition of ERK/JNK resulted in suppression of IL-6/IL-8 expression in LILRA3-stimulated RA-FLSs. LILRA3 was co-localized with its homologue LILRB1 and shared ligand HLA-G in RA-FLSs. CONCLUSION: The present study provides the first evidence that soluble LILRA3 is a novel proinflammatory mediator involved in synovial inflammation by promoting RA-FLS activation, migration and invasion, probably through the ERK/JNK signalling pathways.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Antígenos HLA-G , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1 , Interleucina-6 , Interleucina-8 , Inflamación , Receptores Inmunológicos
8.
Ann Med ; 55(2): 2246370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37591778

RESUMEN

Introduction: Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by autoantibody production, joint inflammation and bone destruction. Nearly 1/3 of RA patients with the active disease also exhibit a normal range of ESR and CRP. Here we assessed the performance and clinical significance of soluble CD24 (sCD24) as a biomarker of disease activity in RA.Methods: A total of 269 RA patients, 59 primary Sjogren's syndrome (SS) patients, 81 systematic lupus erythematosus (SLE) patients, 76 osteoarthritis (OA) patients and 97 healthy individuals (HC) were included in this study. Soluble CD24 in sera were detected by ELISA. Therefore, the concentration of sCD24 was analyzed in RA patients with different disease activity statuses.Results: The sCD24 was significantly increased in RA (2970 pg/mL), compared to other rheumatic diseases (380-520 pg/mL) and healthy individuals (320 pg/mL). Moreover, sCD24 was elevated in 66.67% of early RA and 61.11% of seronegative RA patients. In addition, sCD24 was significantly correlated with the disease duration and inflammatory indicators.Conclusion: The sCD24 could be an inflammatory biomarker in RA patients, especially in early and seronegative patients.


Asunto(s)
Artritis Reumatoide , Enfermedades Reumáticas , Humanos , Artritis Reumatoide/diagnóstico , Biomarcadores , Relevancia Clínica , Ensayo de Inmunoadsorción Enzimática , Antígeno CD24
9.
Lupus Sci Med ; 10(2)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37500293

RESUMEN

OBJECTIVE: Recently, a new subtype of granzyme B (GrB)-producing Breg cells has been identified, which was proven to be involved in autoimmune disease. Our recent report demonstrated that GrB-producing Breg cells were correlated with clinical and immunological features of SLE. However, the effect of GrB-producing Breg cells in lupus mice is unclear. METHODS: GrB expression in naïve and lupus mouse B cells was analysed using flow cytometry, PCR, ELISA and ELISpot assays. To study the role of GrB-producing B cells in a lupus model, GrB knockout (KO) and wild-type (WT) mice were intraperitoneally injected with monoclonal cells from the mutant mouse strain B6.C-H-2bm12 (bm12) for 2 weeks. In addition, the function of GrB-producing Breg cells in naïve and lupus mice was further explored using in vitro B cells-CD4+CD25- T cell co-culture assays with GrB blockade/KO of B cells. RESULTS: B cells from the spleens of WT C57BL/6 (B6) mice could express and secret GrB (p<0.001). GrB-producing Breg cells from WT mice showed their regulatory functions on CD4+CD25- T cell. While the frequency of GrB-producing Breg cells was significantly decreased (p=0.001) in lupus mice (p<0.001). Moreover, GrB-producing Breg cells in lupus mice failed to suppress T cell-mediated proinflammatory responses, partially due to the impaired capacity of downregulating the T cell receptor-zeta chain and inducing CD4+CD25- T cell apoptosis. CONCLUSION: This study further revealed the function and mechanism of GrB-producing Breg cells in regulating T cell homeostasis in lupus mice and highlighted GrB-producing Breg cells as a therapeutic target in SLE.


Asunto(s)
Linfocitos B Reguladores , Lupus Eritematoso Sistémico , Humanos , Ratones , Animales , Granzimas/metabolismo , Ratones Endogámicos C57BL , Linfocitos B Reguladores/metabolismo , Linfocitos T Reguladores
10.
Arthritis Res Ther ; 25(1): 104, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322557

RESUMEN

BACKGROUND: Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disorder of unknown etiology. B cells are critical participants in different rheumatic diseases, and their roles in AOSD are rarely investigated. This study aimed to unveil the B cell subset features in AOSD and provide evidence for B cell-based diagnosis and targeted therapies of AOSD. METHODS: B cell subsets in the peripheral blood of AOSD patients and healthy controls (HCs) were detected by flow cytometry. Firstly, the frequencies of B cell subsets were compared. Then, the correlation analysis was performed to explore the correlation between B cell subsets and clinical manifestations in AOSD. Finally, unbiased hierarchical clustering was performed to divide AOSD patients into three groups with different B cell subset features, and the clinical characteristics of the three groups were compared. RESULTS: The frequencies of B cell subsets were altered in AOSD patients. Disease-promoting subsets (such as naïve B cells, double negative B cells (DN B cells), and plasmablasts) increased, and potential regulatory subsets (such as unswitched memory B cells (UM B cells) and CD24hiCD27+ B cells (B10 cells)) decreased in the peripheral blood of AOSD patients. In addition, the altered B cell subsets in AOSD correlated with the clinical and immunological features, such as immune cells, coagulation features, and liver enzymes. Intriguingly, AOSD patients could be divided into three groups with distinct B cell immunophenotyping: group 1 (naïve B cells-dominant), group 2 (CD27+ memory B cells-dominant), and group 3 (precursors of autoantibody-producing plasma cells-dominant). Moreover, these three group patients demonstrated differential manifestations, including immune cells, liver or myocardial enzymes, coagulation features, and systemic score. CONCLUSIONS: B cell subsets are significantly altered in AOSD patients, potentially contributing to the disease pathogenesis. These findings would inspire B cell-based diagnosis and targeted therapies for this refractory disease.


Asunto(s)
Subgrupos de Linfocitos B , Enfermedad de Still del Adulto , Adulto , Humanos , Inmunofenotipificación , Células Plasmáticas
11.
Ann Med ; 55(1): 2208373, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37143367

RESUMEN

BACKGROUND: Lymphocyte activation gene-3 (LAG3) positive B cells have been identified as a novel regulatory B cell subset, while the role of LAG3+ B cells in the pathogenesis of rheumatoid arthritis (RA) remains elusive. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) from RA, osteoarthritis (OA) patients and healthy volunteers were collected for flow cytometry staining of LAG3+ B cells. Their correlation with RA patient clinical and immunological features were analyzed. Moreover, the frequencies of LAG3+ B cells in collagen-induced arthritis (CIA) mice and naive mice were also detected. RESULTS: A significant decrease of LAG3+ B cells was observed in RA patients as compared with healthy individuals and OA patients. Notably, the frequencies of LAG3+ B cells were negatively correlated with tender joint count (r = -0.4301, p = .0157) and DAS28-ESR (r = -0.4018, p = .025) in RA patients. In CIA mice, LAG3+ B cell frequencies were also decreased and negatively correlated with the CIA arthritis score. CONCLUSIONS: Impairment of LAG3+ B cells potentially contributes to RA development. Reconstituting LAG3+ B cells might provide novel therapeutic strategies for the persistent disease.Key messagesLAG3+ B cells have been identified as a novel regulatory B cell subset. However, its role in the pathogenesis of RA remains unknown.This study revealed the decreased frequency of LAG3+ B cells in RA patients. Notably, LAG3+ B cells were negatively correlated with RA disease activity including the tender joint count and DAS28-ESR.In CIA mice, LAG3+ B cell frequencies were also decreased and negatively correlated with the CIA arthritis score.Reconstitution of LAG3+ B cells might provide novel therapeutic strategies for disease perpetuation.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Humanos , Ratones , Artritis Experimental/patología , Leucocitos Mononucleares
12.
Clin Rheumatol ; 42(5): 1435-1442, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36629999

RESUMEN

OBJECTIVES: To evaluate the absolute numbers and frequencies of natural killer T-like (NKT-like) cells in systemic lupus erythematosus (SLE) and to characterize the possible role of the cells. METHODS: Seventy-nine patients with SLE together with 30 age- and sex-matched healthy controls were enrolled. Flow cytometric determination of peripheral NKT-like cells was carried out for all participants by detecting the absolute counts (Abs) and percentage (%) of CD3 + CD16 + CD56 + cells. Disease activity index, laboratory parameters, and clinical manifestations were collected. The correlation between the cells and these parameters was analyzed. RESULTS: SLE patients had, with respect to controls, considerably decreased values of NKT-like cells (P < 0.001 in both absolute number and percentage). The absolute number of NKT-like cells was found to have positive correlations with WBC, RBC, PLT, C3, C4, IgM and negative correlations with the disease duration, SLEDAI-2 K, anti-dsDNA, anti-nucleosome, anti-ribosomal protein, CRP, ESR. Meanwhile, it was found that the percentage values of NKT-like cells decreased in SLE patients with nephritis which was correlated with anti-ribosomal protein and CRP in comparison to SLE patients without nephritis. Moreover, an increase in the NKT-like cell counts was also observed in the patients with a clinical response to the treatment. CONCLUSIONS: The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly, which correlated to disease activities and could recover to normal after the treatment. The NKT-like cells may play an important role in the pathogenesis of SLE and could be a useful marker in the disease assessment. Key Points • The absolute counts and frequencies of NKT-like cells decreased in SLE patients significantly. • NKT-like cells were related to the disease activities and could restore after the treatment. • NKT-like cells may be a useful marker in the disease assessment.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis , Humanos , Lupus Eritematoso Sistémico/diagnóstico , Citometría de Flujo/métodos , Células Asesinas Naturales
13.
Anal Methods ; 15(6): 709-718, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36598183

RESUMEN

Background: Diagnosis of rheumatoid arthritis (RA) basically relies on clinical symptoms and autoantibodies, especially anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF). However, the lack of autoantibodies is still a dilemma clinically in seronegative RA, especially in the early stage of the disease. This study aimed to provide a unique disease fingerprint with high diagnostic value to discriminate RA based on Raman spectroscopy. Methods: Raman spectroscopy provides a repertoire of biomolecules in serum from RA. Multivariate dimension-reducing methods and machine-learning algorithms were exploited to reveal the intrinsic differences and the potential discrimination power. The underlying differential biomolecules were retrieved by the assignment of Raman peaks. Moreover, the correlations between the spectral differences and RA patient's clinical and immunological manifestations were also analyzed. Results: RA patients exhibited unique Raman spectra characterized by biomolecular alterations during the disease progression. The discrimination power yielded 97.3% sensitivity and 94.8% specificity for RA diagnosis. In the recognition of ACPA-negative RA, the sensitivity and specificity also reached 95.6% and 92.8%, respectively. In particular, the differential Raman spectrum peaks of RA patients mainly represented lipids, amino acids, glycogen, and fatty acids. Further analysis showed that the different serum Raman spectra correlated with the clinical features of RA, including disease duration, RF, anticyclic citrullinated peptide antibodies (anti-CCPs), IgA, IgM, IgG, tender joint count, and swollen joint count (|rs| = 0.15-0.52, p < 0.05). Conclusions: Raman spectroscopy was revealed to be a promising diagnostic method for RA, especially for ACPA-negative patients.


Asunto(s)
Artritis Reumatoide , Espectrometría Raman , Humanos , Artritis Reumatoide/diagnóstico , Factor Reumatoide , Autoanticuerpos , Anticuerpos Antiproteína Citrulinada
14.
Clin Exp Rheumatol ; 41(3): 634-641, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36062763

RESUMEN

OBJECTIVES: It has been proved that B cells play indispensable roles in immunity via producing cytokines and secreting antibodies. Aberrant B cells are considered as the major participants in the pathogenesis of systemic lupus erythematosus (SLE). Recently, perforin (PFP)-producing B cell has been identified, serving as a new type of potential anti-tumour effector cells. However, the roles and characteristics of the PFP-producing B cells in SLE remain unclear. METHODS: The frequencies of PFP-producing B cells in peripheral blood of heathy controls (HC) and SLE patients were detected by flow cytometry, and their correlation with the patient clinical and immunological features were analysed. The capacities of these cells in producing PFP were also compared between HC and SLE by RT-qPCR and ELISpot analyses. RESULTS: In this study, we demonstrated that B cells could produce PFP and was further enhanced upon anti-BCR and IL-21 stimulation. In patients with SLE, the frequencies of these PFP-producing B cells were decreased and negatively correlated with the clinical characteristics. Further analysis revealed that SLE patients with vasculitis and pleurisy showed even lower frequencies of PFP-producing B cells. CONCLUSIONS: These findings revealed that B cells could produce PFP, and a decrease in these cells was associated with SLE pathogenesis.


Asunto(s)
Lupus Eritematoso Sistémico , Humanos , Perforina , Citocinas , Linfocitos B/patología
15.
JAMA Netw Open ; 5(11): e2241451, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36355371

RESUMEN

Importance: Primary Sjögren syndrome (pSS) is a systemic autoimmune disease associated with dysregulated immune cells, with no efficient therapy. There is a need to study potential therapeutic approaches. Objective: To investigate the efficacy, safety, and immune response of low-dose interleukin 2 (LD-IL-2) in the treatment of pSS. Design, Setting, and Participants: A double-blind, placebo-controlled randomized clinical trial was conducted with a 2-group superiority design from June 2015 to August 2017. Sixty patients, aged 18 to 70 years, were recruited from Peking University People's Hospital. Efficacy analyses were based on the intention-to-treat (ITT) principle. Data were analyzed from December 2018 to March 2020. Interventions: Patients with pSS were treated with LD-IL-2 or placebo for 12 weeks and accompanied by 12 weeks of follow-up. Main Outcomes and Measures: The primary end point was defined as a 3-point or greater improvement on the European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) by week 24. The secondary end points included other clinical responses, safety, and changes of immune cell subsets at week 12 and 24. Results: Sixty patients with pSS were recruited, with 30 in the LD-IL-2 group (mean [SD] age, 47.6 [12.8] years; 30 [100%] women) and 30 in the placebo group (mean [SD] age, 51.0 [11.9] years; 30 [100%] women), and 57 completed the trial. More patients in the LD-IL-2 group (20 [66.7%]) achieved ESSDAI score reduction of at least 3 points than in the placebo group (8 [26.7%]) at week 24 (P = .004). There were greater resolutions of dryness, pain, and fatigue in the LD-IL-2 group than placebo group at week 12 (dryness: difference, -18.33 points; 95% CI, -28.46 to -8.21 points; P = .001; pain: difference, -10.33 points; 95% CI, -19.38 to -1.29 points; P = .03; fatigue: difference, -11.67 points; 95% CI, -20.65 to -2.68 points; P = .01). No severe adverse events were observed in either group. In addition, the LD-IL-2 group showed a significant decrease in infection compared with the placebo group (1 [3.3%] vs 9 [30.0%]; P = .006). Immunological analysis revealed that LD-IL-2 promoted an expansion of regulatory T cells and regulatory CD24highCD27+ B cells. Conclusions and Relevance: In this randomized clinical trial, LD-IL-2 was effective and well tolerated in patients with pSS, and it restored immune balance, with enhanced regulatory T cells and CD24highCD27+ B cells. Trial Registration: ClinicalTrials.gov Identifier: NCT02464319.


Asunto(s)
Síndrome de Sjögren , Humanos , Femenino , Persona de Mediana Edad , Masculino , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/complicaciones , Interleucina-2/uso terapéutico , Método Doble Ciego , Resultado del Tratamiento , Fatiga/tratamiento farmacológico , Dolor/complicaciones
16.
Adv Sci (Weinh) ; 9(30): e2202706, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36031409

RESUMEN

Emerging evidence emphasizes the functional impacts of host microbiome on the etiopathogenesis of autoimmune diseases, including rheumatoid arthritis (RA). However, there are limited mechanistic insights into the contribution of microbial biomolecules especially microbial peptides toward modulating immune homeostasis. Here, by mining the metagenomics data of tonsillar microbiome, a deficiency of the encoding genes of lantibiotic peptides salivaricins in RA patients is identified, which shows strong correlation with circulating immune cells. Evidence is provided that the salivaricins exert immunomodulatory effects in inhibiting T follicular helper (Tfh) cell differentiation and interleukin-21 (IL-21) production. Mechanically, salivaricins directly bind to and induce conformational changes of IL-6 and IL-21 receptors, thereby inhibiting the bindings of IL-6 and IL-21 to their receptors and suppressing the downstream signaling pathway. Finally, salivaricin administration exerts both prophylactic and therapeutic effects against experimental arthritis in a murine model of RA. Together, these results provide a mechanism link of microbial peptides-mediated immunomodulation.


Asunto(s)
Artritis Reumatoide , Bacteriocinas , Microbiota , Tonsila Palatina , Receptores de Interleucina-21 , Receptores de Interleucina-6 , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Bacteriocinas/uso terapéutico , Interleucina-6/metabolismo , Receptores de Interleucina-21/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Tonsila Palatina/microbiología , Receptores de Interleucina-6/metabolismo
17.
Clin Exp Immunol ; 209(3): 270-279, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35951003

RESUMEN

To investigate the expression and roles of TAM (Tyro3/Axl/Mer) receptor tyrosine kinases (TK) in synovial fluid and synovial tissue of patients with rheumatoid arthritis (RA). The expression of TAM TKs in the synovial fluid and synovial tissues of RA and osteoarthritis (OA) patients was measured by ELISA and immunohistochemistry. The relationships between soluble TAM TKs (sTAM TKs) levels and the clinical features, laboratory parameters and disease activity were analyzed in RA. The concentrations of sTAM TK in the synovial fluids of RA patients were increased in comparison to those of OA patients. Compared with OA patients, the expression of membrane Tyro3 TK (mTyro3 TK) and mMer TK in RA patient synovial tissue were significantly increased, which may partly explain the possible mechanism of elevated levels of sTAM TK in RA patient synovial fluid. sAxl TK levels were decreased in RA patients under sulfasalazine treatment and elevated in patients under Iguratimod treatment. Furthermore, sTyro3 TK levels were positively correlated with erythrocyte sedimentation rate (ESR) and negatively correlated with white blood cells (WBCs), red blood cells (RBCs), and hemoglobin (HB) in RA patients. The levels of sMer TK were positively associated with disease duration and rheumatoid factor (RF) and negatively correlated with HB, complement 3 (C3), and C4. Taken together, TAM TKs might be involved in RA synovial tissue inflammation.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Complemento C3/metabolismo , Humanos , Proteínas Tirosina Quinasas Receptoras , Factor Reumatoide , Sulfasalazina/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Tirosina/metabolismo
18.
Front Immunol ; 13: 884462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514972

RESUMEN

Objective: The study aimed to investigate the serum antigenomic profiling in rheumatoid arthritis (RA) and determine potential diagnostic biomarkers using label-free proteomic technology implemented with machine-learning algorithm. Method: Serum antigens were captured from a cohort consisting of 60 RA patients (45 ACPA-positive RA patients and 15 ACPA-negative RA patients), together with sex- and age-matched 30 osteoarthritis (OA) patients and 30 healthy controls. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was then performed. The significantly upregulated and downregulated proteins with fold change > 1.5 (p < 0.05) were selected. Based on these differentially expressed proteins (DEPs), a machine learning model was trained and validated to classify RA, ACPA-positive RA, and ACPA-negative RA. Results: We identified 62, 71, and 49 DEPs in RA, ACPA-positive RA, and ACPA-negative RA, respectively, as compared to OA and healthy controls. Typical pathway enrichment and protein-protein interaction networks were shown among these DEPs. Three panels were constructed to classify RA, ACPA-positive RA, and ACPA-negative RA using random forest models algorithm based on the molecular signature of DEPs, whose area under curve (AUC) were calculated as 0.9949 (95% CI = 0.9792-1), 0.9913 (95% CI = 0.9653-1), and 1.0 (95% CI = 1-1). Conclusion: This study illustrated the serum auto-antigen profiling of RA. Among them, three panels of antigens were identified as diagnostic biomarkers to classify RA, ACPA-positive, and ACPA-negative RA patients.


Asunto(s)
Artritis Reumatoide , Osteoartritis , Biomarcadores , Cromatografía Liquida , Humanos , Osteoartritis/diagnóstico , Proteómica , Espectrometría de Masas en Tándem
19.
Clin Exp Immunol ; 207(3): 297-306, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35553634

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by proliferative synovitis with deterioration of cartilage and bone. Osteoclasts (OCs) are the active participants in the bone destruction of RA. Although with great advances, most current therapeutic strategies for RA have limited effects on bone destruction. Macrophage scavenger receptor A (SR-A) is a class of pattern recognition receptors (PRRs) involved in bone metabolism and OC differentiation. More recently, our study revealed the critical role of SR-A in RA diagnosis and pathogenesis. Here, we further demonstrated that serum SR-A levels were positively correlated with bone destruction in patients with RA. Anti-SR-A neutralizing antibodies significantly inhibited OC differentiation and bone absorption in vitro in patients with RA, but not in healthy individuals, dampening the expression of OC-specific genes such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), and matrix metalloproteinase-9 (MMP-9). Similar results were also seen in collagen-induced arthritis (CIA) mice in vitro. Moreover, the anti-SR-A neutralizing antibody could further ameliorate osteoclastogenesis in vivo and ex vivo in CIA mice, accompanied by decreased serum levels of C-terminal telopeptide and IL-6, exhibiting potential protective effects. These results suggest that blockade of SR-A using anti-SR-A neutralizing antibodies might provide a promising therapeutic strategy for bone destruction in the RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Anticuerpos Neutralizantes/metabolismo , Artritis Experimental/metabolismo , Artritis Reumatoide/patología , Humanos , Ratones , Osteoclastos/metabolismo , Osteogénesis , Ligando RANK/metabolismo
20.
Expert Opin Ther Targets ; 26(5): 461-477, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510370

RESUMEN

INTRODUCTION: Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED: Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION: Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.


Asunto(s)
Inmunidad Adaptativa , Enfermedades Autoinmunes , Enfermedades Autoinmunes/tratamiento farmacológico , Humanos , Inmunoterapia , Receptores Depuradores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA