Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Adv Sci (Weinh) ; 11(26): e2307452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708713

RESUMEN

Tumor heterogeneity, the presence of multiple distinct subpopulations of cancer cells between patients or among the same tumors, poses a major challenge to current targeted therapies. The way these different subpopulations interact among themselves and the stromal niche environment, and how such interactions affect cancer stem cell behavior has remained largely unknown. Here, it is shown that an FGF-BMP7-INHBA signaling positive feedback loop integrates interactions among different cell populations, including mammary gland stem cells, luminal epithelial and stromal fibroblast niche components not only in organ regeneration but also, with certain modifications, in cancer progression. The reciprocal dependence of basal stem cells and luminal epithelium is based on basal-derived BMP7 and luminal-derived INHBA, which promote their respective expansion, and is regulated by stromal-epithelial FGF signaling. Targeting this interaction loop, for example, by reducing the function of one or more of its components, inhibits organ regeneration and breast cancer progression. The results have profound implications for overcoming drug resistance because of tumor heterogeneity in future targeted therapies.


Asunto(s)
Neoplasias de la Mama , Nicho de Células Madre , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Animales , Femenino , Nicho de Células Madre/fisiología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Ratones , Células Epiteliales/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/genética , Microambiente Tumoral
2.
Mol Cancer ; 23(1): 102, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755678

RESUMEN

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Asunto(s)
Resistencia a Antineoplásicos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Circular , Serina-Treonina Quinasas TOR , Neoplasias de la Mama Triple Negativas , Humanos , ARN Circular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos/genética , Animales , Femenino , Ratones , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Transducción de Señal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Pronóstico
3.
J Hematol Oncol ; 17(1): 36, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783389

RESUMEN

Oncolytic viruses (OVs) offer a novel approach to treat solid tumors; however, their efficacy is frequently suboptimal due to various limiting factors. To address this challenge, we engineered an OV containing targets for neuron-specific microRNA-124 and Granulocyte-macrophage colony-stimulating factor (GM-CSF), significantly enhancing its neuronal safety while minimally compromising its replication capacity. Moreover, we identified PARP1 as an HSV-1 replication restriction factor using genome-wide CRISPR screening. In models of glioblastoma (GBM) and triple-negative breast cancer (TNBC), we showed that the combination of OV and a PARP inhibitor (PARPi) exhibited superior efficacy compared to either monotherapy. Additionally, single-cell RNA sequencing (scRNA-seq) revealed that this combination therapy sensitized TNBC to immune checkpoint blockade, and the incorporation of an immune checkpoint inhibitor (ICI) further increased the survival rate of tumor-bearing mice. The combination of PARPi and ICI synergistically enhanced the ability of OV to establish durable tumor-specific immune responses. Our study effectively overcomes the inherent limitations of OV therapy, providing valuable insights for the clinical treatment of TNBC, GBM, and other malignancies.


Asunto(s)
Viroterapia Oncolítica , Viroterapia Oncolítica/métodos , Animales , Humanos , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Glioblastoma/terapia , Glioblastoma/genética , Virus Oncolíticos/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/genética , Femenino , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Herpesvirus Humano 1/genética , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , MicroARNs/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Sistemas CRISPR-Cas
4.
Cancer Res ; 84(14): 2282-2296, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657120

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. IL1 receptor type 2 (IL1R2) promotes breast tumor-initiating cell (BTIC) self-renewal and tumor growth in TNBC, indicating that targeting it could improve patient treatment. In this study, we observed that IL1R2 blockade strongly attenuated macrophage recruitment and the polarization of tumor-associated macrophages (TAM) to inhibit BTIC self-renewal and CD8+ T-cell exhaustion, which resulted in reduced tumor burden and prolonged survival in TNBC mouse models. IL1R2 activation by TAM-derived IL1ß increased PD-L1 expression by interacting with the transcription factor Yin Yang 1 (YY1) and inducing YY1 ubiquitination and proteasomal degradation in both TAMs and TNBC cells. Loss of YY1 alleviated the transcriptional repression of c-Fos, which is a transcriptional activator of PDL-1. Combined treatment with an IL1R2-neutralizing antibodies and anti-PD-1 led to enhanced antitumor efficacy and reduced TAMs, BTICs, and exhausted CD8+ T cells. These results suggest that IL1R2 blockade might be a strategy to potentiate immune checkpoint blockade efficacy in TNBC to improve patient outcomes. Significance: IL1R2 in both macrophages and breast cancer cells orchestrates an immunosuppressive tumor microenvironment by upregulating PD-L1 expression and can be targeted to enhance the efficacy of anti-PD-1 in triple-negative breast cancer.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Ratones , Humanos , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de los fármacos
5.
Protein Cell ; 15(6): 419-440, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38437016

RESUMEN

Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.


Asunto(s)
Bacteroides fragilis , Neoplasias de la Mama , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Proteína Adaptadora de Señalización NOD1 , Humanos , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Adaptadora de Señalización NOD1/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/genética , Femenino , Bacteroides fragilis/metabolismo , Bacteroides fragilis/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Animales , Ratones , Línea Celular Tumoral , Metaloendopeptidasas
6.
Cell Rep ; 42(11): 113377, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37922310

RESUMEN

ZBP1 senses viral Z-RNAs to induce necroptotic cell death to restrain viral infection. ZBP1 is also thought to recognize host cell-derived Z-RNAs to regulate organ development and tissue inflammation in mice. However, it remains unknown how the host-derived Z-RNAs are formed and how these endogenous Z-RNAs are sensed by ZBP1. Here, we report that oxidative stress strongly induces host cell endogenous Z-RNAs, and the Z-RNAs then localize to stress granules for direct sensing by ZBP1 to trigger necroptosis. Oxidative stress triggers dramatically increase Z-RNA levels in tumor cells, and the Z-RNAs then directly trigger tumor cell necroptosis through ZBP1. Localization of the induced Z-RNAs to stress granules is essential for ZBP1 sensing. Oxidative stress-induced Z-RNAs significantly promote tumor chemotherapy via ZBP1-driven necroptosis. Thus, our study identifies oxidative stress as a critical trigger for Z-RNA formation and demonstrates how Z-RNAs are directly sensed by ZBP1 to trigger anti-tumor necroptotic cell death.


Asunto(s)
Proteínas de Unión al ARN , ARN , Ratones , Animales , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Necroptosis , Muerte Celular/fisiología
7.
ACS Appl Mater Interfaces ; 15(23): 28248-28257, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262400

RESUMEN

The humidity of breath can serve as an important health indicator, providing crucial clinical information about human physiology. Significant progress had been made in the development of flexible humidity sensors. However, improving its humidity sensing performance (sensitivity and durability) is still facing many challenges. In this work, near-field electrohydrodynamic direct writing (NFEDW) was proposed to fabricate humidity sensors with high sensitivity and durability for respiration monitoring. Due to the applied electric field, dense carbon nanotube/cellulose nanofiber (CNT/CNF) networks formed during the printing process that enhance the sensitivity of the sensor. The prepared sensor showed excellent humidity responses, with a maximum response value of 61.5% (ΔR/R0) at 95% relative humidity (RH). Additionally, the sensitivity film prepared by the NFEDW method closely fits the poly(ethylene terephthalate) (PET) substrate, endowing the sensor with outstanding bending (with a maximum curvature of 4.7 cm-1) and folding durability (up to 50 times). The sensitivity of the prepared sensor under different simulated conditions, namely, nose breathing, mouth breathing, coughing, yawning, breath holding, and speaking, was excellent, demonstrating the potential of the sensor for the real-time monitoring of human breath humidity. Thus, the high-performance flexible humidity sensor is suitable for human respiration and health monitoring.


Asunto(s)
Nanofibras , Respiración , Humanos , Humedad , Monitoreo Fisiológico , Celulosa
8.
Cell Res ; 33(6): 464-478, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142671

RESUMEN

Estrogen receptor (ER)-positive luminal breast cancer is a subtype with generally lower risk of metastasis to most distant organs. However, bone recurrence occurs preferentially in luminal breast cancer. The mechanisms of this subtype-specific organotropism remain elusive. Here we show that an ER-regulated secretory protein SCUBE2 contributes to bone tropism of luminal breast cancer. Single-cell RNA sequencing analysis reveals osteoblastic enrichment by SCUBE2 in early bone-metastatic niches. SCUBE2 facilitates release of tumor membrane-anchored SHH to activate Hedgehog signaling in mesenchymal stem cells, thus promoting osteoblast differentiation. Osteoblasts deposit collagens to suppress NK cells via the inhibitory LAIR1 signaling and promote tumor colonization. SCUBE2 expression and secretion are associated with osteoblast differentiation and bone metastasis in human tumors. Targeting Hedgehog signaling with Sonidegib and targeting SCUBE2 with a neutralizing antibody both effectively suppress bone metastasis in multiple metastasis models. Overall, our findings provide a mechanistic explanation for bone preference in luminal breast cancer metastasis and new approaches for metastasis treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Proteínas Hedgehog/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio , Transducción de Señal , Línea Celular Tumoral
9.
Cancer Cell ; 41(5): 828-830, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37160102

RESUMEN

Patients with lung adenocarcinomas (LUAD) frequently develop metastasis. In this issue of Cancer Cell, Lengel et al. perform a comprehensive analysis of metastasis patterns in 2,532 LUAD samples to identify clinicopathologic and genomic features of LUAD tumors associated with metastatic development, burden, and organotropism.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Genómica , Semillas
10.
Cell Discov ; 9(1): 20, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810288

RESUMEN

Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has shown durable clinical benefits in lung cancer. However, many patients respond poorly to ICB treatment, underscoring an incomplete understanding of PD-L1 regulation and therapy resistance. Here, we find that MTSS1 is downregulated in lung adenocarcinoma, leading to PD-L1 upregulation, impairment of CD8+ lymphocyte function, and enhanced tumor progression. MTSS1 downregulation correlates with improved ICB efficacy in patients. Mechanistically, MTSS1 interacts with the E3 ligase AIP4 for PD-L1 monoubiquitination at Lysine 263, leading to PD-L1 endocytic sorting and lysosomal degradation. In addition, EGFR-KRAS signaling in lung adenocarcinoma suppresses MTSS1 and upregulates PD-L1. More importantly, combining AIP4-targeting via the clinical antidepressant drug clomipramine and ICB treatment improves therapy response and effectively suppresses the growth of ICB-resistant tumors in immunocompetent mice and humanized mice. Overall, our study discovers an MTSS1-AIP4 axis for PD-L1 monoubiquitination and reveals a potential combinatory therapy with antidepressants and ICB.

11.
Nat Commun ; 13(1): 7281, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435834

RESUMEN

Chronic inflammation and an immunosuppressive microenvironment promote prostate cancer (PCa) progression and diminish the response to immune checkpoint blockade (ICB) therapies. However, it remains unclear how and to what extent these two events are coordinated. Here, we show that ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, functions downstream of inflammation-induced IKKß activation to shape the immunosuppressive tumor microenvironment (TME). Prostate-specific deletion of Arid1a cooperates with Pten loss to accelerate prostate tumorigenesis. We identify polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) as the major infiltrating immune cell type that causes immune evasion and reveal that neutralization of PMN-MDSCs restricts the progression of Arid1a-deficient tumors. Mechanistically, inflammatory cues activate IKKß to phosphorylate ARID1A, leading to its degradation via ß-TRCP. ARID1A downregulation in turn silences the enhancer of A20 deubiquitinase, a critical negative regulator of NF-κB signaling, and thereby unleashes CXCR2 ligand-mediated MDSC chemotaxis. Importantly, our results support the therapeutic strategy of anti-NF-κB antibody or targeting CXCR2 combined with ICB for advanced PCa. Together, our findings highlight that the IKKß/ARID1A/NF-κB feedback axis integrates inflammation and immunosuppression to promote PCa progression.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Próstata , Masculino , Humanos , Próstata/metabolismo , Quimiotaxis , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , FN-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Proteínas Serina-Treonina Quinasas , Inflamación/genética , Inflamación/metabolismo , Microambiente Tumoral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234544

RESUMEN

Flexible pressure sensors have been widely used in health detection, robot sensing, and shape recognition. The micro-engineered design of the intermediate dielectric layer (IDL) has proven to be an effective way to optimize the performance of flexible pressure sensors. Nevertheless, the performance development of flexible pressure sensors is limited due to cost and process difficulty, prepared by inverted mold lithography. In this work, microstructured arrays printed by aerosol printing act as the IDL of the sensor. It is a facile way to prepare flexible pressure sensors with high performance, simplified processes, and reduced cost. Simultaneously, the effects of microstructure size, PDMS/MWCNTs film, microstructure height, and distance between the microstructures on the sensitivity and response time of the sensor are studied. When the microstructure size, height, and distance are 250 µm, 50 µm, and 400 µm, respectively, the sensor shows a sensitivity of 0.172 kPa-1 with a response time of 98.2 ms and a relaxation time of 111.4 ms. Studies have proven that the microstructured dielectric layer printed by aerosol printing could replace the inverted mold technology. Additionally, applications of the designed sensor are tested, such as the finger pressing test, elbow bending test, and human squatting test, which show good performance.

13.
Proc Natl Acad Sci U S A ; 119(39): e2117988119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36126099

RESUMEN

Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype for its high rates of relapse, great metastatic potential, and short overall survival. How cancer cells acquire metastatic potency through the conversion of noncancer stem-like cells into cancer cells with stem-cell properties is poorly understood. Here, we identified the long noncoding RNA (lncRNA) TGFB2-AS1 as an important regulator of the reversibility and plasticity of noncancer stem cell populations in TNBC. We revealed that TGFB2-AS1 impairs the breast cancer stem-like cell (BCSC) traits of TNBC cells in vitro and dramatically decreases tumorigenic frequency and lung metastasis in vivo. Mechanistically, TGFB2-AS1 interacts with SMARCA4, a core subunit of the SWI/SNF chromatin remodeling complex, and results in transcriptional repression of its target genes including TGFB2 and SOX2 in an in cis or in trans way, leading to inhibition of transforming growth factor ß (TGFß) signaling and BCSC characteristics. In line with this, TGFB2-AS1 overexpression in an orthotopic TNBC mouse model remarkably abrogates the enhancement of tumor growth and lung metastasis endowed by TGFß2. Furthermore, combined prognosis analysis of TGFB2-AS1 and TGFß2 in TNBC patients shows that high TGFB2-AS1 and low TGFß2 levels are correlated with better outcome. These findings demonstrate a key role of TGFB2-AS1 in inhibiting disease progression of TNBC based on switching the cancer cell fate of TNBC and also shed light on the treatment of TNBC patients.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Animales , ADN Helicasas/genética , Humanos , Neoplasias Pulmonares/secundario , Ratones , Recurrencia Local de Neoplasia , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
14.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36006737

RESUMEN

Bone is a common site of metastasis in lung cancer, but the regulatory mechanism remains incompletely understood. Osteoclasts are known to play crucial roles in osteolytic bone metastasis by digesting bone matrix and indirectly enhancing tumor colonization. In this study, we found that IL receptor 20 subunit ß (IL-20RB) mediated a direct tumoral response to osteoclasts. Tumoral expression of IL-20RB was associated with bone metastasis of lung cancer, and functionally, IL-20RB promoted metastatic growth of lung cancer cells in bone. Mechanistically, tumor cells induced osteoclasts to secrete the IL-20RB ligand IL-19, and IL-19 stimulated IL-20RB-expressing tumor cells to activate downstream JAK1/STAT3 signaling, leading to enhanced proliferation of tumor cells in bone. Importantly, blocking IL-20RB with a neutralizing antibody significantly suppressed bone metastasis of lung cancer. Overall, our data revealed a direct protumor role of osteoclastic niche in bone metastasis and supported IL-20RB-targeting approaches for metastasis treatment.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Anticuerpos Neutralizantes , Neoplasias Óseas/patología , Línea Celular Tumoral , Humanos , Ligandos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/patología , Osteoclastos/metabolismo
15.
Cancer Cell ; 40(8): 787-791, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944497

RESUMEN

Metastasis, the major cause of cancer death, represents one of the major challenges in oncology. Scientists are still trying to understand the biological basis underlying the dissemination and outgrowth of tumor cells, why these cells can remain dormant for years, how they become resistant to the immune system or cytotoxic effects of systemic therapy, and how they interact with their new microenvironment. We asked experts to discuss some of the unknowns, advances, and areas of opportunity related to cancer metastasis.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Sistema Inmunológico/patología , Metástasis de la Neoplasia/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología
16.
Materials (Basel) ; 15(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806832

RESUMEN

Three-dimensional microstructures play a key role in the fabrication of flexible electronic products. However, the development of flexible electronics is limited in further applications due to low positioning accuracy, the complex process, and low production efficiency. In this study, a novel method for fabricating three-dimensional circular truncated cone microstructures via low-frequency ultrasonic resonance printing is proposed. Simultaneously, to simplify the manufacturing process of flexible sensors, the microstructure and printed interdigital electrodes were fabricated into an integrated structure, and a flexible pressure sensor with microstructures was fabricated. Additionally, the effects of flexible pressure sensors with and without microstructures on performance were studied. The results show that the overall performance of the designed sensor with microstructures could be effectively improved by 69%. Moreover, the sensitivity of the flexible pressure sensor with microstructures was 0.042 kPa-1 in the working range of pressure from 2.5 to 10 kPa, and the sensitivity was as low as 0.013 kPa-1 within the pressure range of 10 to 30 kPa. Meanwhile, the sensor showed a fast response time, which was 112 ms. The stability remained good after the 100 cycles of testing. The performance was better than that of the flexible sensor fabricated by the traditional inverted mold method. This lays a foundation for the development of flexible electronic technology in the future.

17.
Adv Sci (Weinh) ; 9(25): e2201701, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843886

RESUMEN

Estrogen receptor alpha (ER-α) action is critical for hormone-dependent breast cancer, and ER-α dysregulation can lead to the emergence of resistance to endocrine therapy. Here, it is found that TRIM4 is downregulated in tamoxifen (TAM)-resistant breast cancer cells, while the loss of TRIM4 is associated with an unfavorable prognosis. In vitro and in vivo experiments confirm that TRIM4 increased ER-α expression and the sensitivity of breast cancer cells to TAM. Mechanistically, TRIM4 is found to target SET, and TRIM4-SET interactions are mediated by the RING and B-box domains of TRIM4 and the carboxyl terminus of SET. Moreover, it is determined that TRIM4 catalyzed the K48-linked polyubiquitination of SET (K150 and K172), promoting its proteasomal degradation and disassociation from p53 and PP2A. Once released, p53 and PP2A are able to further promote ESR1 gene transcription and enhance mRNA stability. Moreover, univariate and multivariate Cox proportional hazards regression analyses confirm that TRIM4 expression is an independent predictor of overall survival and recurrence-free survival outcomes in patients with ER-α positive breast cancer. Taken together, the data highlights a previously undiscovered mechanism and suggest that TRIM4 is a valuable biomarker that can be analyzed to predict response to endocrine therapy in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/genética , Proteínas de Unión al ADN , Receptor alfa de Estrógeno , Femenino , Chaperonas de Histonas , Humanos , Tamoxifeno/farmacología , Proteínas de Motivos Tripartitos , Proteína p53 Supresora de Tumor , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
J Clin Invest ; 132(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35230972

RESUMEN

IFN-γ-stimulated MHC class I (MHC-I) antigen presentation underlies the core of antitumor immunity. However, sustained IFN-γ signaling also enhances the programmed death ligand 1 (PD-L1) checkpoint pathway to dampen antitumor immunity. It remains unclear how these opposing effects of IFN-γ are regulated. Here, we report that loss of the histone dimethyltransferase WHSC1 impaired the antitumor effect of IFN-γ signaling by transcriptional downregulation of the MHC-I machinery without affecting PD-L1 expression in colorectal cancer (CRC) cells. Whsc1 loss promoted tumorigenesis via a non-cell-autonomous mechanism in an Apcmin/+ mouse model, CRC organoids, and xenografts. Mechanistically, we found that the IFN-γ/STAT1 signaling axis stimulated WHSC1 expression and, in turn, that WHSC1 directly interacted with NLRC5 to promote MHC-I gene expression, but not that of PD-L1. Concordantly, silencing Whsc1 diminished MHC-I levels, impaired antitumor immunity, and blunted the effect of immune checkpoint blockade. Patient cohort analysis revealed that WHSC1 expression positively correlated with enhanced MHC-I expression, tumor-infiltrating T cells, and favorable disease outcomes. Together, our findings establish a tumor-suppressive function of WHSC1 that relays IFN-γ signaling to promote antigen presentation on CRC cells and provide a rationale for boosting WHSC1 activity in immunotherapy.


Asunto(s)
Antígeno B7-H1 , N-Metiltransferasa de Histona-Lisina , Neoplasias , Proteínas Represoras , Animales , Presentación de Antígeno , Antígeno B7-H1/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas , Humanos , Interferón gamma , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones
19.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35105806

RESUMEN

The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFß signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFß/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.


Asunto(s)
Reprogramación Celular , Neoplasias Mamarias Animales/metabolismo , MicroARNs/metabolismo , ARN Neoplásico/metabolismo , Transducción de Señal , Macrófagos Asociados a Tumores/metabolismo , Animales , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias Mamarias Animales/genética , Ratones , Ratones Noqueados , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/genética , Receptor Toll-Like 4/biosíntesis , Receptor Toll-Like 4/genética , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética
20.
Mol Ther ; 30(3): 1071-1088, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35017116

RESUMEN

Endocytosis of cell surface receptors is essential for cell migration and cancer metastasis. Rab5, a small GTPase of the Rab family, is a key regulator of endosome dynamics and thus cell migration. However, how its activity is regulated still remains to be addressed. Here, we identified a Rab5 inhibitor, a long non-coding RNA, namely HITT (HIF-1α inhibitor at translation level). Our data show that HITT expression is inversely associated with advanced stages and poor prognosis of lung adenocarcinoma patients with area under receiver operating characteristics (ROC) curve (AUC) 0.6473. Further study reveals that both endogenous and exogenous HITT inhibits single-cell migration by repressing ß1 integrin endocytosis in lung adenocarcinoma. Mechanistically, HITT is physically associated with Rab5 at switch I via 1248-1347 nt and suppresses ß1 integrin endocytosis and subsequent cancer metastasis by interfering with guanine nucleotide exchange factors (GEFs) for Rab5 binding. Collectively, these findings suggest that HITT directly participates in the regulation of Rab5 activity, leading to a decreased integrin internalization and cancer metastasis, which provides important insights into a mechanistic understanding of endocytosis and cancer metastasis.


Asunto(s)
Adenocarcinoma , ARN Largo no Codificante , Endocitosis/genética , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Pulmón/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...