Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Article En | MEDLINE | ID: mdl-38733444

Volatile organic compounds (VOCs) frequently pose a threat to the biosphere, impacting ecosystems, flora, fauna, and the surrounding environment. Industrial emissions of VOCs often include the presence of water vapor, which, in turn, diminishes the adsorption capacity and efficacy of adsorbents. This occurs due to the competitive adsorption of water vapor, which competes with target pollutants for adsorption sites on the adsorbent material. In this study, hydrophobic activated carbons (BMIMPF6-AC (L), BMIMPF6-AC (g), and BMIMPF6-AC-H) were successfully prepared using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) to adsorb toluene under humidity environment. The adsorption performance and mechanism of the resulting ionic liquid-modified activated carbon for toluene in a high-humidity environment were evaluated to explore the potential application of ionic liquids as hydrophobic modifiers. The results indicated that BMIMPF6-AC-H exhibited superior hydrophobicity. The toluene adsorption capacity of BMIMPF6-AC-H was 1.53 times higher than that of original activated carbon, while the adsorption capacity for water vapor was only 37.30% of it at 27 °C and 77% RH. The Y-N model well-fitted the dynamic adsorption experiments. To elucidate the microscopic mechanism of hydrophobic modification, the Independent Gradient Model (IGM) method was employed to characterize the intermolecular interactions between BMIMPF6 and toluene. Overall, this study introduces a new modifier for hydrophobic modification of activated carbon, which could enhance the efficiency of activated carbon in treating industrial VOCs.

2.
Angew Chem Int Ed Engl ; : e202407277, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780892

Chiral multi-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials hold promise for circularly polarized organic light-emitting diode (CP-OLED) and 3D display. Herein, we present two pairs of tetraborated intrinsically axial CP-MR-TADF materials, R/S-BDBF-BOH and R/S-BDBT-BOH, with conjugation-extended bidibenzo[b,d]furan and bidibenzo[b,d]thiophene as chiral sources, which effectively participate in the distribution of frontier molecular orbitals. Due to the heavy-atom effect, sulfur atoms are introduced to accelerate the reverse intersystem crossing process and increase efficiency of molecules. R/S-BDBF-BOH and R/S-BDBT-BOH manifest ultra-pure blue emission peaking at 458/459 nm with full width at half maximum of 27 nm (0.16 eV), photoluminescence quantum yields of 90%/91% and dissymmetry factors (|gPL|) of 6.8 × 10-4/8.5 × 10-4, respectively. Correspondingly, the CP-OLEDs exhibit good performances with external quantum efficiency of 30.1% and |gEL| factors of 1.2 × 10-3.

3.
MycoKeys ; 103: 37-55, 2024.
Article En | MEDLINE | ID: mdl-38516363

The Calocybe species possess notable economic and medicinal value, demonstrating substantial potential for resource utilization. The taxonomic studies of Calocybe are lacking in quality and depth. Based on the specimens collected from northeast China, this study provides a detailed description of two newly discovered species, namely Calocybebetulicola and Calocybecystidiosa, as well as two commonly found species, Calocybedecolorata and Calocybeionides. Additionally, a previously unrecorded species, C.decolorata, has recently been discovered in Jilin Province, China. The two newly discovered species can be accurately distinguished from other species within the genus Calocybe based on their distinct morphological characteristics. The primary distinguishing features of C.betulicola include its grayish-purple pileus, grayish-brown to dark purple stipe, smaller basidiomata, absence of cellular pileipellis, and its habitat on leaf litter within birch forests. Calocybecystidiosa is distinguished by its growth on the leaf litter of coniferous forests, a flesh-pink pileus, a fibrous stipe with a white tomentose covering at the base, non-cellular pileipellis, larger basidiospores, and the presence of cheilocystidia. The reconstruction of phylogenetic trees using combined ITS, nLSU, and tef1-α sequences, employing maximum likelihood and Bayesian inference analyses, showed that C.betulicola formed a cluster with C.decurrens, while C.cystidiosa clustered with C.vinacea. However, these two clusters formed separate branches themselves, which also supported the results obtained from our morphological studies. A key to the Calocybe species reported from northeast China is provided to facilitate future studies of the genus.

4.
Adv Mater ; 36(18): e2311857, 2024 May.
Article En | MEDLINE | ID: mdl-38272858

The circularly polarized organic light-emitting diodes (CP-OLEDs) demonstrate promising application in 3D display due to the direct generation of circularly polarized electroluminescence (CPEL). But the chiral luminescence materials face challenges as intricated synthetic route, enantiomeric separation, etc. Herein, fresh CP-OLEDs are designed based on chiral hole transport material instead of chiral emitters. A pair of hole transport enantiomers (R/S-NPACZ) exhibit intense dissymmetry factors (|gPL|) about 5.0 × 10-3. With R/S-NPACZ as hole transport layers, CP-OLEDs are fabricated employing six achiral phosphorescence and thermally activated delayed fluorescence (TADF) materials with different wavelengths, in consistence with the generated CPEL spectra. The CP-OLEDs based on achiral red, green, and blue iridium(III) complexes exhibit external quantum efficiencies (EQEs) of 14.9%, 30.7%, and 14.1% with |gEL| factors of 8.8 × 10-4, 2.3 × 10-3, and 2.0 × 10-3, respectively. Moreover, the devices using achiral blue, blueish-green, and green TADF materials display EQEs of 24.1%, 17.9%, and 25.4% with |gEL| factors of 1.0 × 10-3, 3.6 × 10-3, and 2.2 × 10-3, respectively. As far as known, it is the first example of CP-OLEDs based on chiral hole transport materials, which act as the organic circularly polarizers and have potential to generate CPEL from achiral luminescence materials.

5.
PeerJ ; 11: e16470, 2023.
Article En | MEDLINE | ID: mdl-38050612

Neolentinus is a significant genus, belonging to Gloeophyllaceae, with important economic and ecological values, which are parasites on decaying wood of broad-leaf or coniferous trees, and will cause brown rot. However, the taxonomic study is lagging behind to other groups of macrofungi, especially in China. In view of this, we conducted morphological and molecular phylogenetic studies on this genus. We have discovered new types of cheilocystidia and with extremely long lamellae in Neolentinus, and, thus proposed it as a new species-Neolentinus longifolius. At the same time, we clarified the distribution of Neolentinus cyathiformis in China and provided a detailed description. Moreover, we also described two common species, viz. Neolentinus lepideus and Neolentinus adhaerens. All the species are described based on the Chinese collections. The key to the reported species of Neolentinus from China is provided. And the phylogeny of Neolentinus from China is reconstructed based on DNA sequences of multiple loci including the internal transcribed spacer (ITS) regions, the large subunit nuclear ribosomal RNA gene (nLSU), and the translation elongation factor 1-α gene (tef-1α). In addition, full morphological descriptions, illustrations, color photographs, taxonomic notes, and all the available sequences of Neolentinus species are provided.


Wood , Phylogeny , China
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121882, 2023 Jan 15.
Article En | MEDLINE | ID: mdl-36179561

In this work, a novel isophorone-based fluorescent probe H-1 was designed and synthesized. The probe H-1 could achieve highly selective detection of Al3+ through forming a 1:1 complex, with a recognition mechanism based on intramolecular charge transfer (ICT). The detection limit of the probe H-1 for Al3+ is as low as 8.25 × 10-8 M which was determined by fluorescent titration. It is confirmed that H-1 could be used not only for fluorescence spectrometry to detect Al3+ ions in actual water samples, but also for biological imaging to detect Al3+ ions in cells and plants.


Aluminum , Fluorescent Dyes , Fluorescent Dyes/chemistry , Aluminum/analysis , Spectrometry, Fluorescence/methods , Ions
7.
PeerJ ; 10: e14298, 2022.
Article En | MEDLINE | ID: mdl-36438581

Xinjiang Uyghur Autonomous Region in China embraces a unique geographical and ecological environment, and the macrofungi represent a rich resource. However, few studies on the genus Pluteus have been reported from Xinjiang. In 2021, the macrofungal resources in Xinjiang were surveyed, and 10 specimens belonging to the genus Pluteus were collected. Based on the morphological study and molecular analysis, three species were recognized, P. aletaiensis, P. brunneidiscus, and P. hongoi. Pluteus aletaiensis is proposed as a new species. It is characterized by its bright yellow lamellae and stipe, brittle texture, subfusiform to vesicular pleurocystidia, with short pedicels to broadly lageniform to obtuse at apices, a hymeniderm pileipellis, containing dark brown intracellular pigment, and it grows on the ground. Pluteus brunneidiscus, a new record to China, is characterized by uneven, smooth, grayish brown to brown pileus, with an entire margin, and pointed or flatter apices intermediate cystidia, without apical hooks. Pluteus hongoi, a new record to Xinjiang Uyghur Autonomous Region, China, is characterized by the apical hook's structure (commonly bifid) of pleurocystidia. The nuclear internal transcribed spacer (nrITS) and translation elongation factor 1-alpha (TEF1-a) region were used for the molecular analysis. Phylogenetic trees were constructed using both the maximum likelihood analysis (ML) and Bayesian inference (BI). Detailed descriptions of the three species are presented herein. Finally, a key to the list of eight species of the genus Pluteus knew from Xinjiang is provided.


Environment , Phylogeny , Bayes Theorem , China
8.
Front Microbiol ; 13: 968617, 2022.
Article En | MEDLINE | ID: mdl-36274737

Gymnopus sect. Impudicae is a poorly studied group around the world. However, it is well known for its pungent smell-a total of five species from China belonging to sect. Impudicae were recorded, and included four species new to science-G. epiphyllus, G. cystidiosus, G. subdensilamellatus, and G. subpolyphyllus-which were delimited and proposed based on morphological and molecular evidences, and one new record from Henan, Jiangxi, and Gansu Province, China-G. densilamellatus. Detailed descriptions and illustrations were presented as well as comparisons to similar species. Phylogenetic analysis inferred from the ITS and nLSU dataset supported the Gymnopus as a monophyletic genus which was defined by Oliveira et al., and the novel species grouped as separate lineages within it. A Key to the reported species of Gymnopus sect. Impudicae is also provided.

9.
J Fungi (Basel) ; 8(8)2022 Aug 18.
Article En | MEDLINE | ID: mdl-36012860

Macrofungi are essential in forest ecological functioning. Their distribution and diversity are primarily impacted by vegetation, topography, and environmental factors, such as precipitation and temperature. However, the composition and topographical changes of the macrofungi between the eastern mountainous area and central plains of Jilin Province are currently unknown. For this study, we selected six investigational sites representing three different topographical research sites in Jilin Province to assess macrofungal diversity, and applied a quadrat sampling method. Macro- and micro-morphological characteristics combined with the molecular method were used to identify the collected macrofungi. Meanwhile, selected meteorological data were obtained for statistical analysis. As a result, 691 species were identified, of which Agarics were the most common, accounting for 60.23%, while the Cantharelloid fungi were the least common (0.91%). Furthermore, most of the shared genera (species) were saprophytic. The α diversity showed that the species diversity and richness in Longwan National Forest Park (B2) were the highest at the genus level. The mycorrhizal macrofungi proportion revealed that Quanshuidong Forest Farm (A1) was the healthiest. Finally, species composition similarity decreased with the transition from mountainous to hilly plains. We concluded that the occurrence of macrofungi was most influenced by vegetation. The air humidity, precipitation, and wind velocity were also found to significantly impact the occurrence of macrofungi. Finally, the mycorrhizal:saprophytic ratios and species similarity decreased with the transition from the mountainous area to the plains. The results presented here help elucidate the macrofungi composition and their relationship with environmental factors and topography in Jilin Province, which is crucial for sustainable utilization and future conservation.

10.
MycoKeys ; 91: 97-111, 2022.
Article En | MEDLINE | ID: mdl-36760891

In this contribution to the genus Craterellus in northern China, two new species are introduced: Craterellusconnatus and C.striatus. These species and C.atrobrunneolus, initially described in south-western China, are highly similar and closely related. The species delimitation is molecularly supported by multigene phylogenetic analysis of the nr LSU and tef-1α region. Craterellusconnatus is characterised by its medium-sized basidiomata, greyish-brown and smooth pileus with an off-white margin, the hymenophore with a strongly anastomosing vein, turning khaki upon drying, connate stipe, broad ellipsoid to ellipsoid basidiospores (6.1-7.8 × 4.8-5.9 µm), slender basidia with (2)4-6 sterigmata and the absence of clamp connection. Craterellusstriatus is characterised by its small-sized basidiomata, fibrillose, greyish-brown to yellowish-brown, fully perforated pileus with a brown fringe, the hymenophore with a forking vein, the stipe inflated at the base, broad ellipsoid to ellipsoid basidiospores (6.8-8.0 × 5.1-6.0 µm), 2-6 spored basidia, encrusted hyphae and the absence of clamp connection. Detailed macroscopic and microscopic descriptions, accompanied by illustrations and a taxonomic discussion, are presented. A key to the Chinese Craterellus species is also provided.

12.
Front Microbiol ; 13: 1052948, 2022.
Article En | MEDLINE | ID: mdl-36817106

Boletaceae, the largest family in Boletales, has been attracted by mycologists in the world due to its diverse morphology and complex history of evolution. Although considerable work has been done in the past decades, novel taxa are continually described. The current study aimed to introduce three new taxa and one new record of Boletaceae from China. The morphological descriptions, color photographs, phylogenetic trees to show the positions of the taxa, and comparisons with allied taxa are provided. The new genus Hemilanmaoa is unique in the Pulveroboletus group, and Hemilanmaoa retistipitatus was introduced as the type species. It can be distinguished by its bluing basidioma when injured, a decurrent hymenophore, a stipe covered with distinct reticulations, and a fertile stipitipellis. Porphyrellus pseudocyaneotinctus is characterized by its pileipellis consisting of broadly concatenated cells and thin-walled caulocystidia in Porphyrellus. In Phylloporus, Phylloporus biyangensis can be distinguished by its hymenophores that change to blue when injured and yellow basal mycelium. Lanmaoa angustispora, as a new record, is first reported in Northern China. Internal transcribed spacer (ITS), 28S rDNA (28S), translation elongation factor 1-alpha (tef1-α), RNA polymerase II subunit 1 (rpb1), and RNA polymerase II subunit 2 (rpb2) were employed to execute phylogenetic analyses.

13.
ACS Appl Mater Interfaces ; 13(47): 56413-56419, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34784463

Direct emission of circularly polarized light from organic light-emitting diodes (OLEDs) is a research hotspot as it could increase the efficiency and significantly simplify device architecture of OLED-based 3D displays. In this study, R/S-OBS-Cz and R/S-OBS-TCz with axial chirality were efficiently prepared by using a stable chiral octahydro-binaphthol unit, carbazole/3,6-ditert-butylcarbazole donors, and a 5,5,10,10-tetraoxide acceptor. The chiral unit-acceptor-donor structure provides them not only thermally activated delayed fluorescence (TADF) characteristics with minor singlet-triplet energy gaps of 0.04 and 0.05 eV but also obvious circularly polarized photoluminescence (CPPL) phenomenon with dissymmetry factors of 8.7 × 10-4 and 6.4 × 10-4 in codoped films. Meanwhile, the CP-OLEDs prepared by enantiomers exhibit good device performances with the maximum external quantum efficiency reaching 20.3% and ideal efficiency roll-off as well as obvious CPEL properties with a |gEL| factor up to 1.0 × 10-3.

14.
MycoKeys ; 83: 161-180, 2021.
Article En | MEDLINE | ID: mdl-34703360

Cordyceps species are notable medicinal fungi in China, which are pathogenic on insects and exhibit high biodiversity in tropical and subtropical regions. Recently, three new Cordyceps species, Cordycepschangchunensis and Cordycepsjingyuetanensis growing on pupae of Lepidoptera and Cordycepschangbaiensis growing on larvae of Lepidoptera, were found in Jilin Province, China and are described, based on morphological and ecological characteristics. These three new species are similar to the Cordycepsmilitaris group, but are distinctly distinguishable from the known species. Cordycepschangchunensis, characterised by its small and light yellow to orange stromata which is occasionally forked, covered with white mycelium at the base of stipe, globose to ovoid perithecia, is macroscopically similar to Cordycepsmilitaris. Cordycepschangbaiensis is clearly discriminated from other Cordyceps species by its white to orange and branched stromata, clavate to cylindrical fertile apical portion, immersed and globose to ovoid perithecia. Moreover, unbranched, clavate and orange to light red stromata, almond-shaped to ovoid and immersed perithecia separate Cordycepsjingyuetanensis from other Cordyceps species. nrITS, nrLSU and EF-1α sequences were undertaken and phylogenetic trees, based on Maximum Likelihood and Bayesian Inference analysis showed that the three new species clustered with Cordycepsmilitaris, but formed individual clades, as well as confirmed the results of our morphological study.

15.
Environ Sci Pollut Res Int ; 28(13): 16368-16379, 2021 Apr.
Article En | MEDLINE | ID: mdl-33387320

Studies have shown that mixed electron donors (MEDs) can enhance the CO2-fixing efficiency of non-photosynthetic microbial communities (NPMCs), even up to the level of fixation observed when H2 is used as an electron donor. However, this promotion effect is not stable because its mechanism remains unclear. To elucidate the mechanisms involved, allowing further regulation and optimization of the MED system for improving the CO2-fixing efficiency of NPMCs consistently, cbb gene transcription level and efficiency, extracellular free organic carbon (EFOC) content as well as microbial structure of NPMCs under MED and other electron donor systems were investigated. MEDs synergistically promoted CO2 fixation efficiency of NPMCs, even producing levels seen when H2 was used as the electron donor. Subsequent experiments revealed that the cbb gene abundance and transcription level in the MED system were high compared with those in other single-electron donor systems; the concentration of EFOC per unit cell was relatively lower than that in any other electron donor system; and the system developed a large number of dominant heterotrophic bacteria such as Enterobacteriaceae and Vibrionaceae. Data analysis revealed a high negative correlation between EFOC concentration per unit cell and cbb gene abundance as well as gene transcription level. These results implied that MEDs can promote a complex microbial community structure enriched with high-efficiency heterotrophic bacteria, which can effectively reduce excessive EFOC generated by NPMCs in the CO2 fixation process, promoting overall cbb gene abundance and transcription level within the NPMC and thus enhancing CO2 fixation.


Carbon Cycle , Carbon Dioxide , Electrons , Photosynthesis , Transcription, Genetic
16.
Pestic Biochem Physiol ; 170: 104684, 2020 Nov.
Article En | MEDLINE | ID: mdl-32980064

As important chemical pesticides, protoporphyrinogen oxidase (PPO, EC 1.3.3.4) herbicides play a vital role in weed management. Herein, in a search for novel PPO herbicides, a series of phenoxypyridine-2-pyrrolidinone derivatives were synthesized and their herbicidal activities were tested. To confirm the structures of the newly synthesized compounds, a colorless single crystal of compound 9d was obtained and crystallographic data collected. PPO inhibition experiments showed that most compounds have PPO inhibitory effects. The half-maximal inhibitory concentration (IC50) of compound 9d and oxyfluorfen were 0.041 mg/L and 0.043 mg/L, respectively, which showed compound 9d was the most potent compound. Compound 9d reduced the Chlorophyll a (Chl a) and Chlorophyll b (Chl b) contents of Abutilon theophrasti (A. theophrasti), to 0.306 and 0.217 mg/g, respectively. Crop selectivity experiments and field trial indicated that compound 9d can potentially be used to develop post-emergence herbicides for weed control in rice, cotton, and peanut. Molecular docking studies showed that both oxyfluorfen and compound 9d can enter the PPO cavity to occupy the active site and compete with the porphyrin to block the chlorophyll synthesis process, affect photosynthesis, and eventually cause weed death. Compound 9d was found to be a promising lead compound for novel herbicide development.


Chlorophyll A , Herbicides/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Protoporphyrinogen Oxidase , Pyridines/pharmacology , Pyrrolidinones , Structure-Activity Relationship
17.
J Agric Food Chem ; 68(12): 3729-3741, 2020 Mar 25.
Article En | MEDLINE | ID: mdl-32125836

To seek new protoporphyrinogen oxidase (PPO) inhibitors with better biological activity, a series of novel diphenyl ether derivatives containing tetrahydrophthalimide were designed based on the principle of substructure splicing and bioisomerization. PPO inhibition experiments exhibited that 6c is the most potential compound, with the half-maximal inhibitory concentration (IC50) value of 0.00667 mg/L, showing 7 times higher activity than Oxyfluorfen (IC50 = 0.0426 mg/L) against maize PPO and similar herbicidal activities to Oxyfluorfen in weeding experiments in greenhouses and field weeding experiments. In view of the inspected bioactivities, the structure-activity relationship (SAR) of this series of compounds was also discussed. Crop selection experiments demonstrate that compound 6c is safe for soybeans, maize, rice, peanuts, and cotton at a dose of 300 g ai/ha. Accumulation analysis experiments showed that the accumulation of 6c in some crops (soybeans, peanuts, and cotton) was significantly lower than Oxyfluorfen. Current work suggests that compound 6c may be developed as a new herbicide candidate in fields.


Herbicides/chemistry , Herbicides/toxicity , Phenyl Ethers/chemistry , Phenyl Ethers/toxicity , Plant Weeds/drug effects , Captan/chemical synthesis , Captan/chemistry , Captan/toxicity , Crops, Agricultural/drug effects , Crops, Agricultural/physiology , Halogenated Diphenyl Ethers/toxicity , Herbicides/chemical synthesis , Molecular Docking Simulation , Phenyl Ethers/chemical synthesis , Phthalimides/chemical synthesis , Phthalimides/chemistry , Phthalimides/toxicity , Plant Weeds/enzymology , Plant Weeds/physiology , Protoporphyrinogen Oxidase/antagonists & inhibitors
18.
Future Med Chem ; 10(12): 1497-1514, 2018 06 01.
Article En | MEDLINE | ID: mdl-29788787

Marine bryozoans play an important role for the discovery of novel bioactive compounds among marine organisms. In this review, we summarize 164 new secondary metabolites including macrocyclic lactones, sterols, alkaloids, sphingolipids and so forth from 24 marine bryozoans in the last two decades. The structural features, bioactivity, structure-activity relationship, mechanism and strategies to address the resupply of these scarce secondary metabolites are discussed. The structural and bioactive diversity of the secondary metabolites from marine bryozoans indicated the possibility of using these compounds, especially bryostatin 1 (1), bryostatin analog (BA1), alkaloids (50, 53, 127-128 and 134-139), sphingolipids sulfates (148 and 149) and sulfur-containing aromatic compound (160), as the starting points for new drug discovery.


Alkaloids/pharmacology , Biological Products/pharmacology , Bryostatins/pharmacology , Bryozoa/metabolism , Drug Discovery , Sphingolipids/pharmacology , Sterols/pharmacology , Alkaloids/chemistry , Alkaloids/metabolism , Animals , Biological Products/chemistry , Biological Products/metabolism , Bryostatins/chemistry , Bryostatins/metabolism , Bryozoa/chemistry , Drug Discovery/methods , Humans , Hydrocarbons, Aromatic/chemistry , Hydrocarbons, Aromatic/metabolism , Hydrocarbons, Aromatic/pharmacology , Secondary Metabolism , Sphingolipids/chemistry , Sphingolipids/metabolism , Sterols/chemistry , Sterols/metabolism
19.
Huan Jing Ke Xue ; 36(5): 1550-6, 2015 May.
Article Zh | MEDLINE | ID: mdl-26314099

The seawater samples collected from many different areas with different depth in the South China Sea were cultivated using different electron donors respectively. And the variation in the potential carbon fixation capability ( PCFC ) of non-photosynthetic microbial community (NPMC) in seawater with different depth was determined after a cycle of cultivation through the statistic analysis. In addition, the cause for the variation was clarified through analyzing key gene abundance regarding CO2 fixation and characteristics of seawater with different depth. The result showed that the PCFCs of NPMC in seawater with different depth were generally low and had no significant difference when using NaNO2 as the electron donor. The PCFC of NPMC in surface seawater was higher than that in deep seawater when using H2 as the electron donor, on the contrary, the PCFC of NPMC in deep seawater was higher than that in surface seawater when using Na2S2O3 as the electron donor. The abundance of the main CO2 fixation gene cbbL in surface seawater was higher than that in deep seawater while the cbbM gene abundance in deep seawater was higher than that in surface seawater. Most hydrogen-oxidizing bacteria had the cbbL gene, and most sulfur bacteria had the cbbM gene. The tendency of seawater cbbL/cbbM gene abundance with the change of depth revealed that there were different kinds of bacteria accounting for the majority in NPMC fixing CO2 at different depth of ocean, which led to different response of PCFC of NPMC at different depth of the sea to different electron donors. The distributions of dissolved oxygen and inorganic carbon concentration with the change of the depth of the sea might be an important reason leading to the difference of NPMC structure and even the difference of PCFC at different depth of the sea.


Bacteria/metabolism , Carbon Cycle , Seawater/microbiology , Water Microbiology , Carbon , Carbon Dioxide , China , Electrons , Oceans and Seas , Photosynthesis
20.
Bioresour Technol ; 102(14): 7147-53, 2011 Jul.
Article En | MEDLINE | ID: mdl-21576014

The inhibitory effect of organic carbon on CO(2) fixation (CF) by the non-photosynthetic microbial community (NPMC) and its mechanism were studied. The results showed that different concentrations of glucose inhibited CF to some extent. However, when these microorganisms pre-cultured with glucose were re-cultured without organic carbon, their CF efficiency differed significantly from the control based on the glucose concentration in the pre-culture. ATP as bioenergy and NADH as reductant had no obvious inhibitory effect on CF; conversely, they improved CF efficiency to some extent, especially when both were present simultaneously. These results implied that not all organic materials inhibited CF by NPMC, and only those that acted as good carbon sources, such as glucose, inhibited CF. Moreover, some metabolites generated during the catabolism of glucose by heterotrophic metabolism of NPMC might inhibit CF, while other cumulated materials present in the cell interior, such as ATP and NADH, might improve CF.


Bacteria/drug effects , Bacteria/isolation & purification , Carbon Cycle/drug effects , Carbon Dioxide/metabolism , Carbon/pharmacology , Adenosine Triphosphate/pharmacology , Bacteria/metabolism , Glucose/pharmacology , NAD/pharmacology , Oceans and Seas , Photosynthesis/drug effects , Time Factors
...