Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1387807, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725469

RESUMEN

Background: Multiple studies have shown that skeletal muscle index (SMI) measured on abdominal computed tomography (CT) is strongly associated with bone mineral density (BMD) and fracture risk as estimated by the fracture risk assessment tool (FRAX). Although some studies have reported that SMI at the level of the 12th thoracic vertebra (T12) measured on chest CT images can be used to diagnose sarcopenia, it is regrettable that no studies have investigated the relationship between SMI at T12 level and BMD or fracture risk. Therefore, we further investigated the relationship between SMI at T12 level and FRAX-estimated BMD and fracture risk in this study. Methods: A total of 349 subjects were included in this study. After 1∶1 propensity score matching (PSM) on height, weight, hypertension, diabetes, hyperlipidemia, hyperuricemia, body mass index (BMI), age, and gender, 162 subjects were finally included. The SMI, BMD, and FRAX score of the 162 participants were obtained. The correlation between SMI and BMD, as well as SMI and FRAX, was assessed using Spearman rank correlation. Additionally, the effectiveness of each index in predicting osteoporosis was evaluated through the receiver operating characteristic (ROC) curve analysis. Results: The BMD of the lumbar spine (L1-4) demonstrated a strong correlation with SMI (r = 0.416, p < 0.001), while the BMD of the femoral neck (FN) also exhibited a correlation with SMI (r = 0.307, p < 0.001). SMI was significantly correlated with FRAX, both without and with BMD at the FN, for major osteoporotic fractures (r = -0.416, p < 0.001, and r = -0.431, p < 0.001, respectively) and hip fractures (r = -0.357, p < 0.001, and r = -0.311, p < 0.001, respectively). Moreover, the SMI of the non-osteoporosis group was significantly higher than that of the osteoporosis group (p < 0.001). SMI effectively predicts osteoporosis, with an area under the curve of 0.834 (95% confidence interval 0.771-0.897, p < 0.001). Conclusion: SMI based on CT images of the 12th thoracic vertebrae can effectively diagnose osteoporosis and predict fracture risk. Therefore, SMI can make secondary use of chest CT to screen people who are prone to osteoporosis and fracture, and carry out timely medical intervention.

2.
BMC Geriatr ; 22(1): 796, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229793

RESUMEN

BACKGROUND: With rapid economic development, the world's average life expectancy is increasing, leading to the increasing prevalence of osteoporosis worldwide. However, due to the complexity and high cost of dual-energy x-ray absorptiometry (DXA) examination, DXA has not been widely used to diagnose osteoporosis. In addition, studies have shown that the psoas index measured at the third lumbar spine (L3) level is closely related to bone mineral density (BMD) and has an excellent predictive effect on osteoporosis. Therefore, this study developed a variety of machine learning (ML) models based on psoas muscle tissue at the L3 level of unenhanced abdominal computed tomography (CT) to predict osteoporosis. METHODS: Medical professionals collected the CT images and the clinical characteristics data of patients over 40 years old who underwent DXA and abdominal CT examination in the Second Affiliated Hospital of Wenzhou Medical University database from January 2017 to January 2021. Using 3D Slicer software based on horizontal CT images of the L3, the specialist delineated three layers of the region of interest (ROI) along the bilateral psoas muscle edges. The PyRadiomics package in Python was used to extract the features of ROI. Then Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) algorithm were used to reduce the dimension of the extracted features. Finally, six machine learning models, Gaussian naïve Bayes (GNB), random forest (RF), logistic regression (LR), support vector machines (SVM), Gradient boosting machine (GBM), and Extreme gradient boosting (XGBoost), were applied to train and validate these features to predict osteoporosis. RESULTS: A total of 172 participants met the inclusion and exclusion criteria for the study. 82 participants were enrolled in the osteoporosis group, and 90 were in the non-osteoporosis group. Moreover, the two groups had no significant differences in age, BMI, sex, smoking, drinking, hypertension, and diabetes. Besides, 826 radiomic features were obtained from unenhanced abdominal CT images of osteoporotic and non-osteoporotic patients. Five hundred fifty radiomic features were screened out of 826 by the Mann-Whitney U test. Finally, 16 significant radiomic features were obtained by the LASSO algorithm. These 16 radiomic features were incorporated into six traditional machine learning models (GBM, GNB, LR, RF, SVM, and XGB). All six machine learning models could predict osteoporosis well in the validation set, with the area under the receiver operating characteristic (AUROC) values greater than or equal to 0.8. GBM is more effective in predicting osteoporosis, whose AUROC was 0.86, sensitivity 0.70, specificity 0.92, and accuracy 0.81 in validation sets. CONCLUSION: We developed six machine learning models to predict osteoporosis based on psoas muscle images of abdominal CT, and the GBM model had the best predictive performance. GBM model can better help clinicians to diagnose osteoporosis and provide timely anti-osteoporosis treatment for patients. In the future, the research team will strive to include participants from multiple institutions to conduct external validation of the ML model of this study.


Asunto(s)
Osteoporosis , Músculos Psoas , Teorema de Bayes , Humanos , Aprendizaje Automático , Osteoporosis/diagnóstico por imagen , Músculos Psoas/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
3.
BMC Surg ; 22(1): 313, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962373

RESUMEN

BACKGROUND: Compared with open comminuted calcaneal fractures, less emphasis is placed on postoperative surgical site infection (SSI) of closed comminuted calcaneal fractures. This study aimed to identify the risk factors associated with SSI and build a nomogram model to visualize the risk factors for postoperative SSI. METHODS: We retrospectively collected patients with closed comminuted calcaneal fractures from the Second Affiliated Hospital of Wenzhou Medical University database from 2017 to 2020. Risk factors were identified by logistics regression analysis, and the predictive value of risk factors was evaluated by ROC (receiver operating characteristic curve). Besides, the final risk factors were incorporated into R4.1.2 software to establish a visual nomogram prediction model. RESULTS: The high-fall injury, operative time, prealbumin, aspartate aminotransferase (AST), and cystatin-C were independent predictors of SSI in calcaneal fracture patients, with OR values of 5.565 (95%CI 2.220-13.951), 1.044 (95%CI 1.023-1.064), 0.988 (95%CI 0.980-0.995), 1.035 (95%CI 1.004-1.067) and 0.010 (95%CI 0.001-0.185) (Ps < 0.05). Furthermore, ROC curve analysis showed that the AUC values of high-fall injury, operation time, prealbumin, AST, cystatin-C, and their composite indicator for predicting SSI were 0.680 (95%CI 0.593-0.766), 0.756 (95%CI 0.672-939), 0.331 (95%CI 0.243-0.419), 0.605 (95%CI 0.512-0.698), 0.319 (95%CI 0.226-0.413) and 0.860 (95%CI 0.794-0.926), respectively (Ps < 0.05). Moreover, the accuracy of the nomogram to predict SSI risk was 0.860. CONCLUSIONS: Our study findings suggest that clinicians should pay more attention to the preoperative prealbumin, AST, cystatin C, high-fall injury, and operative time for patients with closed comminuting calcaneal fractures to avoid the occurrence of postoperative SSI. Furthermore, our established nomogram to assess the risk of SSI in calcaneal fracture patients yielded good accuracy and can assist clinicians in taking appropriate measures to prevent SSI.


Asunto(s)
Traumatismos del Tobillo , Cistatinas , Fracturas Óseas , Fracturas Conminutas , Traumatismos de la Rodilla , Traumatismos del Tobillo/complicaciones , Fracturas Óseas/cirugía , Humanos , Nomogramas , Prealbúmina , Estudios Retrospectivos , Factores de Riesgo , Infección de la Herida Quirúrgica/diagnóstico , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA