Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 193: 114983, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245401

RESUMEN

Organic cation transporter 1 (OCT1, gene symbol: SLC22A1) is mainly responsible for the hepatic uptake of various cationic drugs, closely associated with drug-induced liver injury (DILI). Screening and identifying potent OCT1 inhibitors with little toxicity in natural products is of great value in alleviating OCT1-mediated liver injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions (FDIs). Our objective was to investigate potential inhibitors of OCT1 from 96 flavonoids, evaluate the hepatoprotective effects on retrorsine-induced liver injury, and clarify the structure-activity relationships of flavonoids with OCT1. Thirteen flavonoids exhibited significant inhibition (>50%) on OCT1 in OCT1-HEK293 cells. Among them, the five strongest flavonoid inhibitors (IC50 < 10 µM), including α-naphthoflavone, apigenin, 6-hydroxyflavone, luteolin, and isosilybin markedly decreased oxaliplatin-induced cytotoxicity. In retrorsine-induced liver injury models, they also reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to different levels, the best of which was 6-hydroxyflavone. The pharmacophore model clarified that hydrogen bond acceptors at the 4,8,5' position might play a vital role in the inhibitory effect of flavonoids on OCT1. Taken together, our findings would pave the way to predicting the potential risks of flavonoid-related FDIs in humans and optimizing flavonoid structure to alleviate OCT1-mediated liver injury.

2.
J Appl Toxicol ; 44(9): 1388-1402, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760888

RESUMEN

Multidrug and toxin extrusion protein 1 (MATE1), an efflux transporter mainly expressed in renal proximal tubules, mediates the renal secretion of organic cationic drugs. The inhibition of MATE1 will impair the excretion of drugs into the tubular lumen, leading to the accumulation of nephrotoxic drugs in the kidney and consequently potentiating nephrotoxicity. Screening and identifying potent MATE1 inhibitors can predict or minimize the risk of drug-induced kidney injury. Flavonoids, a group of polyphenols commonly found in foodstuffs and herbal products, have been reported to cause transporter-mediated food/herb-drug interactions. Our objective was to investigate the inhibitory effects of flavonoids on MATE1 in vitro and in vivo and to assess the effects of flavonoids on cisplatin-induced kidney injury. Thirteen flavonoids exhibited significant transport activity inhibition (>50%) on MATE1 in MATE1-MDCK cells. Among them, the six strongest flavonoid inhibitors, including irisflorentin, silymarin, isosilybin, sinensetin, tangeretin, and nobiletin, markedly increased cisplatin cytotoxicity in these cells. In cisplatin-induced in vivo renal injury models, irisflorentin, isosilybin, and sinensetin also increased serum creatinine and blood urea nitrogen levels to different degrees, especially irisflorentin, which exhibited the most potent nephrotoxicity with cisplatin. The pharmacophore model indicated that the hydrogen bond acceptors at the 3, 5, and 7 positions may play a critical role in the inhibitory effect of flavonoids on MATE1. Our findings provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions and avoiding the exacerbation of drug-induced kidney injury via MATE1 mediation.


Asunto(s)
Cisplatino , Flavonoides , Proteínas de Transporte de Catión Orgánico , Proteínas de Transporte de Catión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Animales , Flavonoides/farmacología , Cisplatino/toxicidad , Cisplatino/efectos adversos , Interacciones de Hierba-Droga , Masculino , Perros , Células de Riñón Canino Madin Darby , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Interacciones Alimento-Droga , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/metabolismo
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38738625

RESUMEN

Inosine monphosphate (IMP) is one of the important indicators for evaluating meat flavor, and long noncoding RNAs (lncRNAs) play an important role in its transcription and post-transcriptional regulation. Currently, there is little information about how lncRNA regulates the specific deposition of IMP in chicken muscle. In this study, we used transcriptome sequencing to analyze the lncRNAs of the breast and leg muscles of the Jingyuan chicken and identified a total of 357 differentially expressed lncRNAs (DELs), of which 158 were up-regulated and 199 were down-regulated. There were 2,203 and 7,377 cis- and trans-regulated target genes of lncRNAs, respectively, and we identified the lncRNA target genes that are involved in NEGF signaling pathway, glycolysis/glucoseogenesis, and biosynthesis of amino acids pathways. Meanwhile, 621 pairs of lncRNA-miRNA-mRNA interaction networks were constructed with target genes involved in purine metabolism, fatty acid metabolism, and biosynthesis of amino acids. Next, three interacting meso-networks gga-miR-1603-LNC_000324-PGM1, gga-miR-1768-LNC_000324-PGM1, and gga-miR-21-LNC_011339-AMPD1 were identified as closely associated with IMP-specific deposition. Both differentially expressed genes (DEGs) PGM1 and AMPD1 were significantly enriched in IMP synthesis and metabolism-related pathways, and participated in the anabolic process of IMP in the form of organic matter synthesis and energy metabolism. This study obtained lncRNAs and target genes affecting IMP-specific deposition in Jingyuan chickens based on transcriptome analysis, which deepened our insight into the role of lncRNAs in chicken meat quality.


Jingyuan chicken is an excellent local chicken breed listed in the Catalogue of Livestock and Poultry Genetic Resources of China. Its unique growing environment has enabled Jingyuan chicken to develop the characteristics of compact meat, unique flavor, and high nutritional value, which makes it the first choice for chicken food. Inosine monophosphate (IMP) is widely recognized as an important indicator for evaluating the flavor of livestock and poultry meat. To mine potential long noncoding RNAs (lncRNAs) and their regulatory IMP-specific deposition interaction networks, we used transcriptome sequencing to identify 357 lncRNAs that were differentially expressed in breast and leg muscles of 180-d-old Jingyuan hens. We screened the key lncRNAs affecting IMP and three lncRNA-miRNA-mRNA regulatory networks by bioinformatics methods. This provides a new approach to studying IMP-specific deposition, improvement of chicken meat flavor, and breed improvement in Jingyuan chickens.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Inosina Monofosfato , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Pollos/genética , Pollos/metabolismo , Inosina Monofosfato/metabolismo , Transcriptoma , MicroARNs/genética , MicroARNs/metabolismo , Carne/análisis , Inosina/metabolismo , Inosina/genética , Músculo Esquelético/metabolismo , Regulación de la Expresión Génica
4.
Res Vet Sci ; 173: 105275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678847

RESUMEN

Inosine monophosphate (IMP) is widely regarded as an important indicator for evaluating the flavour of poultry meat. However, little is known about the molecular mechanisms affecting the specific deposition of IMP. In this study, we functionally verified PKM2 (Pyruvate kinase M2), a candidate gene related to IMP synthesis, in order to reveal the important role of PKM2 in meat flavour and muscle development of Jingyuan chickens. The results showed that the IMP content in breast muscle of Jingyuan chickens was negatively correlated with PKM2 mRNA expression (r = -0.1710), while the IMP content in leg muscle was significantly positively correlated with PKM2 mRNA expression (r = 0.7350) (P < 0.05). During myogenesis, PKM2 promoted the proliferation rate of myoblasts and the expression of proliferation marker genes, inhibited the apoptosis rate and the expression of apoptosis marker genes, and decreased the expression of differentiation marker genes. Up-regulation of PKM2 enhanced the expression of key genes in the purine metabolic pathway and the de novo synthesis pathway of IMP, and suppressed the expression of key genes in the salvage pathway. ELISA assays showed that PKM2 decreased IMP and hypoxanthine (HX) contents, while adenosine triphosphate (ATP) and uric acid (UA) contents were clearly elevated. In summary, these studies revealed that PKM2 regulates myogenesis and specific deposition of IMP, which can be used to improve the quality of Jingyuan chicken meat.


Asunto(s)
Pollos , Inosina Monofosfato , Mioblastos , Animales , Pollos/metabolismo , Pollos/crecimiento & desarrollo , Inosina Monofosfato/metabolismo , Mioblastos/metabolismo , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Carne/análisis , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Proliferación Celular
5.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611918

RESUMEN

Fever is a serious condition that can lead to various consequences ranging from prolonged illness to death. Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) has been used for centuries to treat fever, but the specific chemicals responsible for its antipyretic effects are not well understood. This study aimed to isolate and identify the chemicals with antipyretic bioactivity in T. hemsleyanum extracts and to provide an explanation for the use of T. hemsleyanum as a Chinese herbal medicine for fever treatment. Our results demonstrate that kaempferol 3-rutinoside (K3OR) could be successfully isolated and purified from the roots of T. hemsleyanum. Furthermore, K3OR exhibited a significant reduction in rectal temperature in a mouse model of fever. Notably, a 4 µM concentration of K3OR showed more effective antipyretic effects than ibuprofen and acetaminophen. To explore the underlying mechanism, we conducted an RNA sequencing analysis, which revealed that PXN may act as a key regulator in the fever process induced by lipopolysaccharide (LPS). In the mouse model of fever, K3OR significantly promoted the secretion of IL-6 and TNF-α during the early stage in the LPS-treated group. However, during the middle to late stages, K3OR facilitated the elimination of IL-6 and TNF-α in the LPS-treated group. Overall, our study successfully identified the chemicals responsible for the antipyretic bioactivity in T. hemsleyanum extracts, and it answered the question as to why T. hemsleyanum is used as a traditional Chinese herbal medicine for treating fever. These findings contribute to a better understanding of the therapeutic potential of T. hemsleyanum in managing fever, and they provide a basis for further research and development in this field.


Asunto(s)
Antocianinas , Antipiréticos , Medicamentos Herbarios Chinos , Flavonas , Animales , Ratones , Temperatura Corporal , Factor de Necrosis Tumoral alfa/genética , Antipiréticos/farmacología , Antipiréticos/uso terapéutico , Interleucina-6 , Quempferoles/farmacología , Medicamentos Herbarios Chinos/farmacología , Lipopolisacáridos , Fiebre/tratamiento farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Modelos Animales de Enfermedad
6.
PLoS Pathog ; 20(3): e1012130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551978

RESUMEN

Classical Swine Fever (CSF), caused by the Classical Swine Fever Virus (CSFV), inflicts significant economic losses on the global pig industry. A key factor in the challenge of eradicating this virus is its ability to evade the host's innate immune response, leading to persistent infections. In our study, we elucidate the molecular mechanism through which CSFV exploits m6A modifications to circumvent host immune surveillance, thus facilitating its proliferation. We initially discovered that m6A modifications were elevated both in vivo and in vitro upon CSFV infection, particularly noting an increase in the expression of the methyltransferase METTL14. CSFV non-structural protein 5B was found to hijack HRD1, the E3 ubiquitin ligase for METTL14, preventing METTL14 degradation. MeRIP-seq analysis further revealed that METTL14 specifically targeted and methylated TLRs, notably TLR4. METTL14-mediated regulation of TLR4 degradation, facilitated by YTHDF2, led to the accelerated mRNA decay of TLR4. Consequently, TLR4-mediated NF-κB signaling, a crucial component of the innate immune response, is suppressed by CSFV. Collectively, these data effectively highlight the viral evasion tactics, shedding light on potential antiviral strategies targeting METTL14 to curb CSFV infection.


Asunto(s)
Adenina , Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Animales , Virus de la Fiebre Porcina Clásica/genética , Inmunidad Innata , Porcinos , Receptor Toll-Like 4
7.
J Biotechnol ; 382: 1-7, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38185431

RESUMEN

Serving as a vital medical intermediate and an environmentally-friendly preservative, D-PLA exhibits substantial potential across various industries. In this report, the urgent need for efficient production motivated us to achieve the rational design of lactate dehydrogenase and enhance catalytic efficiency. Surprisingly, the enzymatic properties revealed that a mutant enzyme, LrLDHT247I/D249A/F306W/A214Y (LrLDH-M1), had a viable catalytic advantage. It demonstrated a 3.3-fold increase in specific enzyme activity and approximately a 2.08-fold improvement of Kcat. Correspondingly, molecular docking analysis provided a supporting explanation for the lower Km and higher Kcat/Km of the mutant enzyme. Thermostability analysis exhibited increased half-lives and the deactivation rate constants decreased at different temperatures (1.47-2.26-fold). In addition, the mutant showed excellent resistance abilities in harsh environments, particularly under acidic conditions. Then, a two-bacterium (E. coli/pET28a-lrldh-M1 and E. coli/pET28a-ladd) coupled catalytic system was developed and realized a significant conversion rate (77.7%) of D-phenyllactic acid, using 10 g/L L-phenylalanine as the substrate in a two-step cascade reaction.


Asunto(s)
Escherichia coli , L-Lactato Deshidrogenasa , L-Lactato Deshidrogenasa/genética , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Catálisis , Poliésteres
8.
J Asian Nat Prod Res ; 26(3): 353-371, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37589480

RESUMEN

The organic anion transporter 3 (OAT3), an important renal uptake transporter, is associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OAT3 inhibitors with little toxicity in natural products, especially flavonoids, in reducing OAT3-mediated AKI is of great value. The five strongest OAT3 inhibitors from the 97 flavonoids markedly decreased aristolochic acid I-induced cytotoxicity and alleviated methotrexate-induced nephrotoxicity. The pharmacophore model clarified hydrogen bond acceptors and hydrophobic groups are the critical pharmacophores. These findings would provide valuable information in predicting the potential risks of flavonoid-containing food/herb-drug interactions and optimizing flavonoid structure to alleviate OAT3-related AKI.


Asunto(s)
Lesión Renal Aguda , Flavonoides , Transportadores de Anión Orgánico Sodio-Independiente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Transporte Biológico , Flavonoides/farmacología , Flavonoides/química , Transportadores de Anión Orgánico/efectos de los fármacos , Transportadores de Anión Orgánico/metabolismo , Relación Estructura-Actividad , Transportadores de Anión Orgánico Sodio-Independiente/efectos de los fármacos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo
9.
Vet Microbiol ; 287: 109887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925877

RESUMEN

N6-methyladenosine (m6A), the most common modification in mammalian mRNA and viral RNA, regulates mRNA structure, stability, translation, and nuclear export. The Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus causing severe neurologic disease in humans. To date, the role of m6A modification in JEV infection remains unclear. Herein, we aimed to determine the impact of m6A methylation modification on JEV replication in vitro and in vivo. Our results demonstrated that the overexpression of the m6A reader protein YTHDF1 in vitro significantly inhibits JEV proliferation. Additionally, YTHDF1 negatively regulates JEV proliferation in YTHDF1 knockdown cells and YTHDF1 knockout mice. MeRIP-seq analysis indicated that YTHDF1 interacts with several interferon-stimulated genes (ISGs), especially in IFIT3. Overall, our data showed that YTHDF1 played a vital role in inhibiting JEV replication. These findings bring novel insights into the specific mechanisms involved in the innate immune response to infection with JEV. They can be used in the development of novel therapeutics for controlling JEV infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Humanos , Ratones , Animales , Virus de la Encefalitis Japonesa (Especie)/genética , Interacciones Huésped-Patógeno , Encefalitis Japonesa/veterinaria , Línea Celular , ARN Mensajero , Replicación Viral , Mamíferos , Proteínas de Unión al ARN/genética
10.
J Appl Toxicol ; 43(10): 1421-1435, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37057715

RESUMEN

Organic cation transporter 2 (OCT2) is mainly responsible for the renal secretion of various cationic drugs, closely associated with drug-induced acute kidney injury (AKI). Screening and identifying potent OCT2 inhibitors with little toxicity in natural products in reducing OCT2-mediated AKI is of great value. Flavonoids are enriched in various vegetables, fruits, and herbal products, and some were reported to produce transporter-mediated drug-drug interactions. This study aimed to screen potential inhibitors of OCT2 from 96 flavonoids, assess the nephroprotective effects on cisplatin-induced kidney injury, and clarify the structure-activity relationships of flavonoids with OCT2. Ten flavonoids exhibited significant inhibition (>50%) on OCT2 in OCT2-HEK293 cells. Among them, the six most potent flavonoid inhibitors, including pectolinarigenin, biochanin A, luteolin, chrysin, 6-hydroxyflavone, and 6-methylflavone markedly decreased cisplatin-induced cytotoxicity. Moreover, in cisplatin-induced renal injury models, they also reduced serum blood urea nitrogen (BUN) and creatinine levels to different degrees, the best of which was 6-methylflavone. The pharmacophore model clarified that the aromatic ring, hydrogen bond acceptors, and hydrogen bond donors might play a vital role in the inhibitory effect of flavonoids on OCT2. Thus, our findings would pave the way to predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans and optimizing flavonoid structure to alleviate OCT2-related AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Humanos , Transportador 2 de Cátion Orgánico/metabolismo , Cisplatino/toxicidad , Proteínas de Transporte de Catión Orgánico/metabolismo , Células HEK293 , Flavonoides/farmacología , Relación Estructura-Actividad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control
11.
J Mater Chem B ; 11(19): 4227-4236, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37114909

RESUMEN

In this study, we synthesized an amorphous metal-organic framework by adjusting the concentration of precursors, and established a two-enzyme system consisting of lactate dehydrogenase (LDH) and glucose dehydrogenase (GDH), which successfully achieved coenzyme recycling, and applied it to the synthesis of D-phenyllactic acid (D-PLA). The prepared two-enzyme-MOF hybrid material was characterized using XRD, SEM/EDS, XPS, FT-IR, TGA, CLSM, etc. In addition, reaction kinetic studies indicated that the MOF-encapsulated two-enzyme system exhibited faster initial reaction velocities than free enzymes due to its amorphous ZIF-generated mesoporous structure. Furthermore, the pH stability and temperature stability of the biocatalyst were evaluated, and the results indicated a significant improvement compared to the free enzymes. Moreover, the amorphous structure of the mesopores still maintained the shielding effect and protected the enzyme structure from damage by proteinase K and organic solvents. Finally, the remaining activity of the biocatalyst for the synthesis of D-PLA reached 77% after 6 cycles of use, and the coenzyme regeneration still maintained at 63%, while the biocatalyst also retained 70% and 68% residual activity for the synthesis of D-PLA after 12 days of storage at 4 °C and 25 °C, respectively. This study provides a reference for the design of MOF-based multi-enzyme biocatalysts.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Cinética , Lactato Deshidrogenasas/metabolismo , Glucosa Deshidrogenasas/metabolismo , Biocatálisis , Espectroscopía Infrarroja por Transformada de Fourier
12.
Brain Res Bull ; 198: 3-14, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37076049

RESUMEN

Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-alpha-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.


Asunto(s)
Depresión , Serotonina , Ratas , Ratones , Animales , Serotonina/metabolismo , Depresión/psicología , Reserpina/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Antidepresivos/uso terapéutico , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad
13.
Acta Pharm Sin B ; 13(3): 1326-1336, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36970201

RESUMEN

Neuropathic pain is a chronic disease that severely afflicts the life and emotional status of patients, but currently available treatments are often ineffective. Novel therapeutic targets for the alleviation of neuropathic pain are urgently needed. Rhodojaponin VI, a grayanotoxin from Rhododendron molle, showed remarkable antinociceptive efficacy in models of neuropathic pain, but its biotargets and mechanisms are unknown. Given the reversible action of rhodojaponin VI and the narrow range over which its structure can be modified, we perforwmed thermal proteome profiling of the rat dorsal root ganglion to determine the protein target of rhodojaponin VI. N-Ethylmaleimide-sensitive fusion (NSF) was confirmed as the key target of rhodojaponin VI through biological and biophysical experiments. Functional validation showed for the first time that NSF facilitated trafficking of the Cav2.2 channel to induce an increase in Ca2+ current intensity, whereas rhodojaponin VI reversed the effects of NSF. In conclusion, rhodojaponin VI represents a unique class of analgesic natural products targeting Cav2.2 channels via NSF.

14.
Toxicology ; 488: 153475, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870413

RESUMEN

Glucose transporter 1 (GLUT1) is mainly responsible for glucose uptake and energy metabolism, especially in the aerobic glycolysis process of tumor cells, which is closely associated with the advancement of tumors. Numerous studies have demonstrated that the inhibition of GLUT1 can decrease the growth of tumor cells and enhance drug sensitivity, so GLUT1 is considered to be a promising therapeutic target for cancer treatment. Flavonoids are a group of phenolic secondary metabolites present in vegetables, fruits, and herbal products, some of which were reported to increase cancer cells' sensitivity to sorafenib by inhibiting GLUT1. Our objective was to screen potential inhibitors of GLUT1 from 98 flavonoids and assess the sensitizing effect of sorafenib on cancer cells. and illuminate the structure-activity relationships of flavonoids with GLUT1. Eight flavonoids, including apigenin, kaempferol, eupatilin, luteolin, hispidulin, isosinensetin, sinensetin, and nobiletin exhibited significant inhibition (>50%) on GLUT1 in GLUT1-HEK293T cells. Among them, sinensetin and nobiletin showed stronger sensitizing effects and caused a sharp downward shift of the cell viability curves in HepG2 cells, illustrating these two flavonoids might become sensitizers to enhance the efficacy of sorafenib by inhibiting GLUT1. Molecular docking analysis elucidated inhibitory effect of flavonoids on GLUT1 was related to conventional hydrogen bonds, but not Pi interactions. The pharmacophore model clarified the critical pharmacophores of flavonoids inhibitors are hydrophobic groups in 3'positions and hydrogen bond acceptors. Thus, our findings would provide useful information for optimizing flavonoid structure to design novel GLUT1 inhibitors and overcome drug resistance in cancer treatment.


Asunto(s)
Flavonoides , Glucosa , Humanos , Flavonoides/farmacología , Flavonoides/química , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Sorafenib , Relación Estructura-Actividad
15.
Vet Microbiol ; 280: 109706, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871523

RESUMEN

Pseudorabies virus (PRV) is an enveloped, linear double-stranded DNA herpesvirus that resulted in huge financial losses to the swine industry. In addition to vaccination, the development of antiviral molecules is also a beneficial supplement to the control of Pseudorabies (PR). Although our previous studies have shown that porcine Mx protein (poMx1/2) significantly inhibited the proliferation of RNA virus, it was unknown whether poMx1/2 could inhibit porcine DNA virus, such as PRV. In this study, it was investigated the inhibitory effect of porcine Mx1/2 protein on PRV multiplication. The results showed that both poMx1 and poMx2 had anti-PRV activities, which required GTPase ability and stable oligomerization. Interestingly, the two GTPase deficient mutants (G52Q and T148A) of poMx2 also had the antiviral ability against PRV, which was consistent with previous reports, indicating that these mutants recognized and blocked the viral targets. Mechanistically, the antiviral restriction of poMx1/2 came from their inhibition of the early gene synthesis of PRV. Our results for the first time shed light on the antiviral activities of two poMx proteins against DNA virus. The data from this study provide further insights to develop new strategies for preventing and controlling the diseases caused by PRV.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Porcinos , Animales , Herpesvirus Suido 1/fisiología , Replicación Viral , Antivirales/farmacología , GTP Fosfohidrolasas
16.
Sensors (Basel) ; 23(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36772672

RESUMEN

Precise positioning using smartphones has been a topic of interest especially after Google decided to provide raw GNSS measurement through their Android platform. Currently, the greatest limitations in precise positioning with smartphone Global Navigation Satellite System (GNSS) sensors are the quality and availability of satellite-to-smartphone ranging measurements. Many papers have assessed the quality of GNSS pseudorange and carrier-phase measurements in various environments. In addition, there is growing research in the inclusion of a priori information to model signal blockage, multipath, etc. In this contribution, numerical estimation of actual range errors in smartphone GNSS precise positioning in realistic environments is performed using a geodetic receiver as a reference. The range errors are analyzed under various environments and by placing smartphones on car dashboards and roofs. The distribution of range errors and their correlation to prefit residuals is studied in detail. In addition, a comparison of range errors between different constellations is provided, aiming to provide insight into the quantitative understanding of measurement behavior. This information can be used to further improve measurement quality control, and optimize stochastic modeling and position estimation processes.

18.
Vet Microbiol ; 272: 109511, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35849988

RESUMEN

Classical swine fever virus (CSFV), a member of the Flaviviridae enveloped RNA virus family, results in an epidemic disease that brings serious economic losses to the pig industry worldwide. Valosin-containing protein (VCP/p97), a multifunctional active protein in cells, is related to the life activities of many viruses. However, the role of VCP in CSFV infection remains unknown. In this study, it was first found that treatment of VCP inhibitors impaired CSFV propagation. Furthermore, overexpression or knockdown of VCP showed that it was essential for CSFV infection. Moreover, confocal microscopy and immunoprecipitation assay showed that VCP was recruited for intracellular transport from early endosomes to lysosomes. Importantly, knockdown of VCP prevented CSFV to release from early endosomes, suggesting that VCP is a key factor for CSFV trafficking. Taken together, our findings first demonstrate that the endocytosis of CSFV into PK-15 cells requires the participation of VCP, providing the alternative approach for the discovery of novel anti-flaviviridae drugs.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Enfermedades de los Porcinos , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Endocitosis , Inmunoprecipitación/veterinaria , Lisosomas/metabolismo , Porcinos , Enfermedades de los Porcinos/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo , Replicación Viral
19.
Colloids Surf B Biointerfaces ; 216: 112604, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35636328

RESUMEN

In this study, we synthesized a novel biocatalyst by encapsulating lactate dehydrogenase (LDH) in the metal-organic framework ZIF-90 by one-pot embedding. It showed strong biological activity for efficient synthesis of D-phenyllactic acid (D-PLA). The morphology and structure of LDH@ZIF-90 was systematically characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, confocal laser scanning microscopy (CLSM) and gas sorption. According to thermogravimetric analysis (TGA), the enzyme loading of the biocatalyst was 3 %. The Michaelis-Menten constant (Km) and maximal reaction rate (Vmax) of LDH@ZIF-90 were similar to those of free LDH, which proved that ZIF-90 had good biocompatibility to encapsulate LDH. At the same time, LDH@ZIF-90 exhibited enhanced tolerance to temperature, pH and organic solvents, and its reusability was greatly improved with 68 % of initial enzyme activity remaining after 7 rounds of recylcing. Overall, LDH encapsulated in ZIF-90 may be an economically competitive and environmentally friendly novel biocatalyst for the synthesis of D-PLA.


Asunto(s)
L-Lactato Deshidrogenasa , Estructuras Metalorgánicas , Lactatos , Estructuras Metalorgánicas/química , Poliésteres , Espectroscopía Infrarroja por Transformada de Fourier
20.
Membranes (Basel) ; 12(2)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35207160

RESUMEN

In this study, chitosan and sugarcane cellulose were used as film-forming materials, while the inorganic agent zinc oxide (ZnO) and natural compound phenyllactic acid (PA) were used as the main bacteriostatic components to fabricate biodegradable antimicrobial composite membranes. The water absorption and antimicrobial properties were investigated by adjusting the concentration of PA. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) results demonstrated that the components of the composite membrane were successfully integrated. The addition of ZnO improved the mechanical and antimicrobial properties of the composite membrane, while the addition of PA with high crystallinity significantly reduced the water absorption and swelling. Moreover, the addition of 0.5% PA greatly improved the water absorption of the composite membrane. The results of antimicrobial experiments showed that PA improved the antimicrobial activity of the composite membrane against Staphylococcus aureus, Escherichia coli, Aspergillus niger and Penicillium rubens. Among them, 0.3% PA had the best antimicrobial effect against S. aureus, E. coli and A. niger, while 0.7% PA had the best antimicrobial effect against P. rubens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA