Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1612, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959220

RESUMEN

Accurately measuring the ability of the K/HDEL receptor (ERD2) to retain the ER cargo Amy-HDEL has questioned earlier results on which the popular receptor recycling model is based upon. Here we demonstrate that ERD2 Golgi-retention, rather than fast ER export supports its function. Ligand-induced ERD2 redistribution is only observed when the C-terminus is masked or mutated, compromising the signal that prevents Golgi-to-ER transport of the receptor. Forcing COPI mediated retrograde transport destroys receptor function, but introducing ER-to-Golgi export or cis-Golgi retention signals re-activate ERD2 when its endogenous Golgi-retention signal is masked or deleted. We propose that ERD2 remains fixed as a Golgi gatekeeper, capturing K/HDEL proteins when they arrive and releasing them again into a subdomain for retrograde transport back to the ER. An in vivo ligand:receptor ratio far greater than 100 to 1 strongly supports this model, and the underlying mechanism appears to be extremely conserved across kingdoms.


Asunto(s)
Proteínas de la Membrana , Receptores de Péptidos , Proteínas de la Membrana/metabolismo , Ligandos , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo
2.
Foods ; 10(12)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34945573

RESUMEN

Gannan navel orange and Jinggang pomelo, belonging to the genus Citrus, are good sources of phenolic compounds, which are mainly concentrated in the peel. These phenolic compounds are considered promising in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). In order to maximize nutrients retention and bioactivity in the peel, pomelo peel and orange peel were processed using freeze-drying technology and mixed in the ratio (pomelo peel powder 50% and orange peel powder 50%) to make citrus peel powder (CPP). The purpose of this study was to explore new strategies and mechanisms associated with the consumption of CPP to alleviate nonalcoholic fatty liver injury, lipid metabolism disorders, and gut microbiota dysbiosis in obese mice induced by high-fat diet (HFD). The results showed that after 12 weeks of CPP administration, CPP supplementation had a strong inhibitory effect on HFD-induced weight gain, hepatic fat accumulation, dyslipidemia, and the release of pro-inflammatory cytokines. In particular, CPP modulates the composition of the intestinal flora, such as increasing the relative abundance of phylum Firmicutes, genus Faecalibaculum, genus Lactobacillus, genus Dubosiella, and genus Lachnospiraceae_NK4A136_ group and decreasing the relative abundance of phylum Bacteroidota, genus Helicobacter, and genus Bacteroides. These results suggest that CPP has a preventive effect on NAFLD, which can be related to the regulation of intestinal flora.

3.
J Food Biochem ; 45(4): e13696, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33751612

RESUMEN

Chestnut kernels are often used for direct consumption; or processed to produce marron glacé, chestnut purée, and gluten-free products, while chestnut by-products (inner shell and outer shell) are treated as waste residues. Many in vivo and in vitro studies have proved how chestnut shell extract functions as an antioxidant and exhibits anticancer, anti-inflammatory, antidiabetic, and anti-obesity activities. This review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and reported potential health effects. The aim is to have a better understanding of the functional active ingredients in chestnut shells and their value-added uses, to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATIONS: In recent years, chestnut shells have become a hot research topic because of their rich bioactive ingredients. Due to the large amount of phenolic compounds in chestnut shells and their potential health functions (antioxidant, anticancer, antibacterial, anti-inflammatory, hypoglycemic, and treatment of obesity), extracts of chestnut shells have high biological value in the treatment of diseases. Therefore, this review introduces the main components of phenolic compounds in chestnut shells, traditional and modern extraction methods, and the potential health effects of these compounds. The aim of this review is to better understand the functional, active ingredients in chestnut shells and their value-added uses, and to increase understanding of future applications of this agricultural and sideline product in the food, pharmaceutical, and cosmetic industries.


Asunto(s)
Nueces , Fenoles , Antioxidantes/uso terapéutico , Hipoglucemiantes , Nueces/química , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA