Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Physiol Nutr Metab ; 42(2): 117-127, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28056188

RESUMEN

The purpose of this study was to examine the possible mechanism underlying the protective effect of tetramethylpyrazine (TMP) against disuse-induced muscle atrophy. Sprague-Dawley rats were randomly assigned to receive 14 days of hindlimb unloading (HLU, a model of disuse atrophy) or cage controls. The rats were given TMP (60 mg/kg body mass) or vehicle (water) by gavage. Compared with vehicle treatment, TMP significantly attenuated the loss of gastrocnemius muscle mass (-33.56%, P < 0.01), the decrease of cross-sectional area of slow fiber (-10.99%, P < 0.05) and fast fiber (-15.78%, P < 0.01) during HLU. Although TMP failed to further improve recovery of muscle function or fatigability compared with vehicle treatment, it can suppress the higher level of lactate (-22.71%, P < 0.01) induced by HLU. Besides, TMP could effectually reduce the increased protein expression of muscle RING-finger protein 1 induced by HLU (-14.52%, P < 0.01). Furthermore, TMP can ameliorate the calcium overload (-54.39%, P < 0.05), the increase of malondialdehyde content (-19.82%, P < 0.05), the decrease of superoxide dismutase activity (21.34%, P < 0.05), and myonuclear apoptosis (-78.22%, P < 0.01) induced by HLU. Moreover, TMP significantly reduced HLU-induced increase of Bax to B-cell lymphoma 2 (-36.36%, P < 0.01) and cytochrome c release (-36.16%, P < 0.05). In conclusion, TMP attenuated HLU-induced gastrocnemius muscle atrophy through suppression of Ca2+/reactive oxygen species increase and consequent proteolysis and apoptosis. Therefore, TMP might exhibit therapeutic effect against oxidative stress, cytosolic calcium overload, and mitochondrial damage in disuse-induced muscle atrophy.


Asunto(s)
Apoptosis/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Trastornos Musculares Atróficos/prevención & control , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Pirazinas/uso terapéutico , Vasodilatadores/uso terapéutico , Animales , Biomarcadores/metabolismo , Señalización del Calcio/efectos de los fármacos , Represión Enzimática/efectos de los fármacos , Femenino , Suspensión Trasera/efectos adversos , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/metabolismo , Proteolisis/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA