Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 357: 141910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582170

RESUMEN

Growing quantities of biomass ashes (phyto-ashs) are currently produced worldwide due to the increasing biomass consumption in energy applications. Utilization of phyto-ash in agriculture is environmentally friendly solution. However, mechanisms involving the coordination of carbon metabolism and distribution in plants and soil amendment are not well known. In the present study, tobacco plants were chemically-fertilized with or without 2‰ phyto-ash addition. The control had sole chemical fertilizer; for two phyto-ash treatments, the one (T1) received comparable levels of nitrogen, phophorus, and potassium from phyto-ash and fertilizers as the control and another (T2) had 2‰ of phyto-ash and the same rates of fertilizers as the control. Compared with the control, phyto-ash addition improved the soil pH from 5.94 to about 6.35; T2 treatment enhanced soil available potassium by 30% but no difference of other elements was recorded among three treatments. Importantly, bacterial (but not fungal) communities were significantly enriched by phyto-ash addition, with the rank of richness as: T2 > T1 > control. Consistent with amelioration of soil properties, phyto-ash promoted plant growth through enlarged leaf area and photosynthesis and induced outgrowth of lateral roots (LRs). Interestingly, increased auxin content was recorded in 2nd and 3rd leaves and roots under phyto-ash application, also with the rank level as T2 > T1 > control, paralleling with higher transcripts of auxin synthetic genes in the topmost leaf and stronger [3H]IAA activity under phyto-ash addition. Furthermore, exogenous application of analog exogenous auxin (NAA) restored leaf area, photosynthesis and LR outgrowth to the similar level as T2 treatment; conversely, application of auxin transport inhibitor (NPA) under T2 treatment retarded leaf and root development. We demonstrated that phyto-ash addition improved soil properties and thus facilitated carbon balance within plants and biomass accumulation in which shifting auxin distribution plays an important role.


Asunto(s)
Biomasa , Fertilizantes , Ácidos Indolacéticos , Suelo , Suelo/química , Ácidos Indolacéticos/metabolismo , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Agricultura/métodos , Nitrógeno/metabolismo , Microbiología del Suelo , Carbono/metabolismo , Potasio/metabolismo
2.
New Phytol ; 239(2): 673-686, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37194447

RESUMEN

Modern agriculture needs large quantities of phosphate (Pi) fertilisers to obtain high yields. Information on how plants sense and adapt to Pi is required to enhance phosphorus-use efficiency (PUE) and thereby promote agricultural sustainability. Here, we show that strigolactones (SLs) regulate rice root developmental and metabolic adaptations to low Pi, by promoting efficient Pi uptake and translocation from roots to shoots. Low Pi stress triggers the synthesis of SLs, which dissociate the Pi central signalling module of SPX domain-containing protein (SPX4) and PHOSPHATE STARVATION RESPONSE protein (PHR2), leading to the release of PHR2 into the nucleus and activating the expression of Pi-starvation-induced genes including Pi transporters. The SL synthetic analogue GR24 enhances the interaction between the SL receptor DWARF 14 (D14) and a RING-finger ubiquitin E3 ligase (SDEL1). The sdel mutants have a reduced response to Pi starvation relative to wild-type plants, leading to insensitive root adaptation to Pi. Also, SLs induce the degradation of SPX4 via forming the D14-SDEL1-SPX4 complex. Our findings reveal a novel mechanism underlying crosstalk between the SL and Pi signalling networks in response to Pi fluctuations, which will enable breeding of high-PUE crop plants.


Asunto(s)
Oryza , Fosfatos , Fosfatos/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Fósforo/metabolismo , Lactonas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol Biochem ; 169: 259-268, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34814097

RESUMEN

Improving nitrogen use efficiency (NUE) has been a focal point for crop growth and yield throughout the world. Glutamine synthetase (GS), which plays a fundamental role in N metabolism, has been exploited to improve crop NUE. However, increased GS activity in rice by overexpressing its own GS genes hasn't shown superior plant productivity. Here, transgenic rice plants with increased GS activity by overexpressing TaGS1 were analyzed under field and culture conditions at two N rates. Transgenic expression of TaGS1 significantly increases GS activity in leaves, junctions and roots of rice plants relative to wide-type plants. When rice plants grown under consecutive field trials with N rates of 60 and 240 kg/ha, three transgenic lines have higher grain yield than wild-type plants, with increment of 15%-22% in T2 generation and with that of 28%-36% in T3 generation, respectively. And increased panicle numbers (effective tiller numbers) mainly contribute to the advantage of grain yield in transgenic plants. Analysis of N use-related traits shows that transgenic plants with enhanced GS activity promote root capacity to obtain N, N accumulation during growth stages and N remobilization to grains, ultimately conferring 31%-40% improvement of NUE relative to wild-type rice plants.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Oryza/genética , Oryza/metabolismo , Plantas Modificadas Genéticamente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA