Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 675: 218-225, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38968638

RESUMEN

Converting plastics into organic matter by photoreforming is an emerging way to deal with plastic pollution and produce valuable organic matter. Water shortage can be alleviated by using seawater resources. To solve these problems, we synthesize a ternary heterostructure composite g-C3N4/CdS/NiS. Heterojunctions are formed between graphitized carbon nitride (g-C3N4), cadmium sulfide (CdS) and nickel sulfide (NiS), which effectively improve the problem of fast charge recombination of pure g-C3N4 and CdS. The results of the g-C3N4/CdS/NiS photocatalytic tests show that the hydrogen production rates in seawater and pure water for 5 h are 30.44 and 25.79 mmol/g/h, respectively. In stability test, the hydrogen production rate of the g-C3N4/CdS/NiS in seawater and pure water is similar. This suggests that seawater can replace pure water as a source of hydrogen. While H2 is generated, the lactate obtained by polylactic acid (PLA) hydrolysis is oxidized to form small organic compounds such as formate, acetate and pyruvate. Our study shows that g-C3N4/CdS/NiS can not only use seawater as a hydrogen source to produce H2, but also photoreformate plastics dissolved in seawater into valuable small organic molecules. This has a positive impact on the production and use of clean energy, as well as on plastic pollution and water scarcity.

2.
J Colloid Interface Sci ; 662: 263-275, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354554

RESUMEN

Defect-engineered metal-organic frameworks (DEMOFs) are emerging advanced materials. The construction of DEMOFs is of great significance; however, DEMOF-based catalysis remains unexplored. (E)-vinylboronates, an important building block for asymmetric synthesis, can be synthesized via the hydroboration of alkynes. However, the lack of high-performance catalysts considerably hinders their synthesis. Herein, a series of DEHKUST-1 (HKUST = Hong Kong University of Science and Technology) (Da-f) catalysts with missing occupation of linkers at Cu nodes were designed by partially replacing benzene-1,3,5-tricarboxylate (H3BTC) with defective connectors of pyridine-3,5-dicarboxylate (PYDC) to efficiently promote the hydroboration of alkynes. Results showed that the Dd containing 0.8 doping ratio of PYDC exhibited remarkable catalytic activity than the defect-free HKUST-1. This originated from the improved accessibility for reactants towards the Lewis acid active Cu sites of DEHKUST-1 due to the presence of plenty of rooms next to the Cu sites and enhanced coordination ability in such 'defective' HKUST-1. Dd had high selectivity (>99 %) and yield (>96 %) for (E)-vinylboronates and extensive functional group compatibility for terminal alkynes. Density functional theory (DFT) calculations were performed to elucidate the mechanism of hydroboration. Compared with that of defect-free HKUST-1, the low energy barrier of DEHKUST-1 can be attributed to the lower coordination number of Cu sites and enhanced accessibility of Cu active sites towards reagents.

3.
Inorg Chem ; 63(5): 2776-2786, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266170

RESUMEN

Developing efficient heterogeneous catalysts for chemical fixation of CO2 to produce high-value-added chemicals under mild conditions is highly desired but still challenging. Herein, we first reported an approach to prepare a novel catalyst (Ag@NCNFs), featuring Ag nanoparticles (NPs) embedded within porous nitrogen-doped carbon nanofibers (NCNFs), via growing a Ag metal-organic framework on one-dimensional electrospun nanofibers followed by pyrolysis. Benefiting from the abundant nitrogen species and porous structure, Ag NPs is well dispersed in the obtained Ag@NCNFs. Catalytic studies indicated that Ag@NCNFs exhibited excellent catalytic activity for the three-component coupling reaction of CO2, secondary amines, and propargylic alcohols to generate ß-oxopropylcarbamates under mild conditions with a turnover number (TON) of 16.2, and it can be recycled and reused at least 5 times without an obvious decline in catalytic activity. The reaction mechanism was clearly clarified by FTIR, NMR, 13C isotope labeling, control experiments, and density functional theory calculations. The results suggest that Ag@NCNFs and 1,8-diazabicyclo[5.4.0]undec-7-ene can synergistically activate propargylic alcohol to react with CO2, and then the generated α-alkylidene cyclic carbonate was invaded by secondary amine to produce ß-oxopropylcarbamate. Importantly, to the best of our knowledge, this is the first experimental and theoretical investigation on this reaction.

4.
Chemosphere ; 352: 141296, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296214

RESUMEN

It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.


Asunto(s)
Compuestos Heterocíclicos , Estructuras Metalorgánicas , Ligandos , Tetraciclina , Antibacterianos , Electrones
5.
J Am Chem Soc ; 145(30): 16835-16842, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37487021

RESUMEN

In nature, enzymatic reactions occur in well-functioning catalytic pockets, where substrates bind and react by properly arranging the catalytic sites and amino acids in a three-dimensional (3D) space. Single-atom nanozymes (SAzymes) are a new type of nanozymes with active sites similar to those of natural metalloenzymes. However, the catalytic centers in current SAzymes are two-dimensional (2D) architectures and the lack of collaborative substrate-binding features limits their catalytic activity. Herein, we report a dimensionality engineering strategy to convert conventional 2D Fe-N-4 centers into 3D structures by integrating oxidized sulfur functionalities onto the carbon plane. Our results suggest that oxidized sulfur functionalities could serve as binding sites for assisting substrate orientation and facilitating the desorption of H2O, resulting in an outstanding specific activity of up to 119.77 U mg-1, which is 6.8 times higher than that of conventional FeN4C SAzymes. This study paves the way for the rational design of highly active single-atom nanozymes.


Asunto(s)
Peroxidasa , Peroxidasas , Peroxidasa/química , Oxidorreductasas , Carbono/química , Colorantes , Catálisis
6.
J Colloid Interface Sci ; 652(Pt A): 737-748, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37500314

RESUMEN

The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.

7.
Environ Sci Pollut Res Int ; 30(25): 67290-67302, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37103698

RESUMEN

Nitrogen-rich organic polymer poly(chloride triazole) (PCTs) was synthesized by a one-step method as metal-halogen-free heterogeneous catalyst for the solvent-free CO2 cycloaddition. PCTs had abundant nitrogen sites and hydrogen bond donors, exhibited great activity for the cycloaddition of CO2 and epichlorohydrin, and achieved 99.6% yield of chloropropene carbonate under the conditions of 110 ℃, 6 h, and 0.5 MPa CO2. The activation of epoxides and CO2 by hydrogen bond donor and nitrogen sites was further explained by density functional theory (DFT) calculations. In summary, this study showed that nitrogen-rich organic polymer is a versatile platform for CO2 cycloaddition, and this paper provides a reference for the design of CO2 cycloaddition catalysts.


Asunto(s)
Dióxido de Carbono , Nitrógeno , Polímeros , Dióxido de Carbono/química , Catálisis , Reacción de Cicloadición , Compuestos Epoxi/química , Polímeros/química
8.
ACS Appl Mater Interfaces ; 15(1): 1879-1890, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36584397

RESUMEN

The conversion of CO2 as a C1 source into value-added products is an attractive alternative in view of the green synthesis. Among the reported approaches, the cyclization reaction of aziridines with CO2 is of great significance since the generated N-containing cyclic skeletons are extensively found in pharmaceutical chemistry and industrial production. However, a low turnover number (TON) and homogeneous catalysts are often involved in this catalytic system. Herein, one novel copper-organic framework {[Cu2(L4-)(H2O)2]·3DMF·2H2O}n (1) (H4L = 2'-fluoro-[1,1':4',1″-Terphenyl]-3,3″,5,5″-tetracarboxylic acid) assembled by nanosized [Cu12] cages was successfully synthesized and structurally characterized, which exhibits high CO2/N2 selectivity due to the strong interactions between CO2 and open Cu(II) sites and ligands in the framework. Catalytic investigations suggest that 1 as a heterogeneous catalyst can effectively catalyze the cyclization of aziridines with CO2, and the TON can reach a record value of 90.5. Importantly, 1 displays excellent chemical stability, which can be recycled at least five times. The combination explorations of nuclear magnetic resonance (NMR), 13C-isotope labeling experiments, and density functional theory (DFT) clearly uncover the mechanism of this aziridine/CO2 coupling reaction system, in which 1 and tetrabutylammonium bromide (TBAB) can highly activate the substrate molecule, and the synergistic catalytic effect between them can greatly reduce the reaction energy barrier from 51.7 to 36.2 kcal/mol.

9.
Angew Chem Int Ed Engl ; 61(19): e202114817, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014760

RESUMEN

The cyclization reactions of propargylic alcohols and propargylic amines with CO2 are important in industrial applications, but it was a great challenge that non-noble-metal catalysts catalyzed both reactions under mild conditions. Herein, the catalyst Cu2 O@ZIF-8 was prepared by encapsulating Cu2 O nanoparticles into robust ZIF-8, and it can effectively catalyze the cyclization of both propargylic alcohols and propargylic amines with CO2 into valuable α-alkylidene cyclic carbonates and oxazolidinones with turnover numbers (TONs) of 12.1 and 19.6, which can be recycled at least five times. The mechanisms were further uncovered by NMR, FTIR, 13 C isotope-labeling experiments and DFT calculations, in which Cu2 O and DBU can synergistically activate the C≡C bond and the hydroxy/amino group of substrates. Importantly, it is the first example of a noble-metal-free catalyst that can catalyze both propargylic alcohols and propargylic amines with CO2 simultaneously.

10.
J Hazard Mater ; 416: 126046, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492891

RESUMEN

Efficient removal of antibiotics from aqueous solution is of fundamental importance due to the increasingly severe antibiotic-related pollution. Herein, a high-performance Fe-ZIF-8-500 adsorbent was synthesized by Fe-doping strategy and subsequent activation with high-temperature. In order to evaluate the feasibility of Fe-ZIF-8-500 as an adsorbent for tetracycline (TC) removal, the adsorption properties of Fe-ZIF-8-500 were systematically explored. The results showed that the Fe-ZIF-8-500 exhibited ultrahigh adsorption capacity for TC with a record-high value of 867 mg g-1. Additionally, the adsorption kinetics and isotherms for TC onto the Fe-ZIF-8-500 can be well-fitted by the pseudo-second-order kinetics model and the Freundlich model, respectively. The ultrahigh adsorption capacity of Fe-ZIF-8-500 can be explained by the synergistic effect of multi-affinities, i.e., surface complexation, electrostatic attraction, π-π interaction and hydrogen bonding. After being used for four cycles the adsorption capacity of Fe-ZIF-8-500 remains a high level, demonstrating its outstanding reusability. The ultrahigh adsorption capacity, excellent reusability, satisfactory water stability and easy-preparation nature of Fe-ZIF-8-500 highlight its bright prospect for removing tetracycline pollutant from wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos , Cinética , Tetraciclina , Agua , Contaminantes Químicos del Agua/análisis
11.
Inorg Chem ; 60(17): 13425-13433, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34369141

RESUMEN

The coupling reaction of propargylic amines and carbon dioxide (CO2) to synthesize 2-oxazolidinones is an important reaction in industrial production, and yet harsh reaction conditions and noble-metal catalysts are often required to achieve high product yields. Herein, one novel noble-metal-free three-dimensional framework, [Mg3Cu2I2(IN)4(HCOO)2(DEF)4]n (1), assembled by magnesium and copper clusters was synthesized and applied to this reaction. Compound 1 displays excellent solvent stability. Importantly, 1, acting as heterogeneous catalyst, can highly catalyze the cyclization of propargylic amines with CO2 under atmospheric pressure at room temperature, which can be recycled at least five times without an obvious decrease of the catalytic activity. NMR spectroscopy, coupled with 13C-isotope- and deuterium-labeling experiments, clearly clarifies the mechanism of this catalytic system: CO2 was successfully captured and converted to the product of 2-oxazolidinones, the C≡C bond of propargylic amines can be effectively activated by 1, and proton transfer was involved in the reaction process. Density functional theory calculations are further conducted to uncover the reaction path and the crucial role of compound 1 during the reaction.

12.
Inorg Chem ; 60(12): 9122-9131, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34061517

RESUMEN

A new porous copper-organic framework assembled from 12-nuclear [Cu12] nanocages {[Cu2(L4-)(H2O)2]·4DMA·2H2O}n (1) (H4L = 5,5'-(butane-1,4-diyl)-bis(oxy)-diisophthalic acid) was successfully prepared and structurally characterized. Compound 1 feathering of a 3D framework with two types of 1D nanotubular channels and a large specific surface area can effectively enrich various harmful dyes. Additionally, due to the carbon dioxide (CO2) interactions with open Cu(II) sites and the electron-rich ether oxygen atoms of ligand in 1, it exhibits a highly selective CO2 uptake. Interestingly, 1 can effectively catalyze the cycloaddition reaction of CO2 with various epoxides under mild conditions, which is ascribed to the Lewis acid Cu(II) sites in the framework of 1. Importantly, 1 acting as a heterogeneous catalyst can be recycled at least 10 times without an obvious loss of catalytic activity, and the CO2 cycloaddition mechanism was further uncovered by density functional theory (DFT) calculations. This study can greatly enrich the MOF catalysts system of CO2 conversion and also provide a valuable guidance for the design of efficient MOFs catalysts.

13.
Nanoscale Adv ; 3(14): 4079-4088, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36132833

RESUMEN

A vital issue for the fixation and conversion of CO2 into useful chemical products is to find effective catalysts. In this work, in order to develop more effective and diverse catalysts, we implemented the first computational screening study (at M06-2X//B3LYP level) on the cycloaddition of CO2 with aziridines under eighteen metal-substituted HKUST-1 MOFs and tetrabutylammonium bromide (TBAB) as a co-catalyst. For all considered catalytic systems, the ring-opening of aziridine is calculated to be the rate-determining step. Up to 11 M-HKUST-1 systems, i.e., Rh (31.87 kcal mol-1), Y (31.02), Sc (30.50), V (30.02), Tc (29.90), Cd (29.80), Ti (29.32), Mn (29.05), Zn (28.29), Fe (27.85) and Zr (25.09), possess lower ring-opening barrier heights than the original Cu-HKUST-1 (32.90), indicative of their superior catalytic ability to the original Cu-HKUST-1 in theory. With the lowest ring-opening barrier, Zr-HKUST-1 is strongly advocated for future synthetic and catalytic studies.

14.
ACS Appl Mater Interfaces ; 11(3): 3087-3097, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30586280

RESUMEN

Porous conjugated polymers offer enormous potential for energy storage because of the combined features of pores and extended π-conjugated structures. However, the drawbacks such as low pore volumes and insolubilities of micro- and mesoporous conjugated polymers restrict the loading of electroactive materials and thus energy storage performance. Herein, we report the synthesis of iron-doped macroporous conjugated polymers for hosting sulfur as the cathode of high-performance lithium-sulfur (Li-S) batteries. The macroporous conjugated polymers are synthesized via in situ growth of poly(3-hexylthiophene) (P3HT) from reduced graphene oxide (RGO) sheets, followed by gelation of the composite (RGO- g-P3HT) in p-xylene and freeze-drying. The network structures of the macroporous materials can be readily tuned by controlling the chain length of P3HT grafted to RGO sheets. The large pore volumes of the macroporous RGO- g-P3HT materials (ca. 34 cm3 g-1) make them excellent frameworks for hosting sulfur as cathodes of Li-S batteries. Furthermore, incorporation of Fe into the macroporous RGO- g-P3HT cathode results in reduced polarization, enhanced specific capacity (1,288, 1,103, and 907 mA h g-1 at 0.05, 0.1, and 0.2 C, respectively), and improved cycling stability (765 mA h g-1 after 100 cycles at 0.2 C). Density functional theory calculations and in situ characterizations suggest that incorporation of Fe enhances the interactions between lithium polysulfides and the P3HT framework.

15.
Phys Chem Chem Phys ; 20(41): 26266-26272, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30324197

RESUMEN

As a perpetual chemical curiosity, planar tetracoordinate carbon (ptC) that violates the traditional tetrahedral carbon (thC) has made enormous achievements. In particular, the 18-valence-electron (18ve) counting rule has been found to be very effective in predicting ptC structures, as in CX42- (X = Al/Ga/In/Tl). By contrast, the corresponding neutral CX4 with 16ve each takes the thC form like methane. Herein, we report a mono-substituted neutral 16ve-CAl3X (X = Al/Ga/In/Tl). Our theoretical results showed that the competition between thC and ptC can be well tuned upon variation of X, and for X = In and Tl, the ptC structure becomes isoenergetic to and even more stable than thC, respectively. Thus, a low-lying ptC can be achieved in the 16ve-CAl3X set without acquiring additional electrons. This unintuitive result can be ascribed to the increased energetic preference of the ionic sub-structure [CAl3-]X+ from X = Al to Tl. We thus predict the first penta-atomic ptC species with 16ve, and the ionic strategy presented in this work is expected to promote novel designs of ptC molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA