Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 46(21): 5425-5428, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724492

RESUMEN

Surface-normal electroabsorption modulators (SNEAMs) are appealing for short-reach communication systems because of their outstanding properties, such as ultrawide bandwidth and polarization-insensitive response; however, due to their small active volumes, large voltage swings are typically required to obtain the best performance. Here we propose and demonstrate a novel, to the best of our knowledge, design that dramatically reduces the voltage needed by SNEAMs and significantly increases their extinction ratio. By shrinking the multiple quantum well stack of SNEAMs to the minimum and by optimizing their reflectivity with dielectric coatings of suitable refractive index and thickness, we obtain modulators that require drive voltages of only 1-2Vpp. We show that these novel devices largely outperform conventional SNEAMs.

2.
Opt Lett ; 45(16): 4472-4475, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32796986

RESUMEN

Surface-normal electroabsorption modulators (SNEAMs) have unique electro-optic modulation properties; however, their behavior and performance at high light intensity is affected by thermal nonlinearities that take place in the modulator active volume. Here we show a novel, to the best of our knowledge, approach to make SNEAMs insensitive to optical power without the use of power-hungry heaters or feedback control systems. By passively compensating for the thermo-optic dependence of the SNEAM resonant cavity, we obtain an eight-fold reduction in the wavelength shift of the SNEAM response at 4 dBm of input power. Furthermore, we show no appreciable degradation in the SNEAM eye diagram at 25 Gbit/s, when the input power is increased up to 2 dBm, which is about four times higher than in conventional SNEAMs.

3.
Opt Lett ; 45(16): 4484-4487, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32797006

RESUMEN

We report multi-level modulation in polarization-independent surface-normal electro-absorption modulators (SNEAMs). Four-level pulse amplitude modulation (PAM-4) at a line rate of 44 Gb/s is demonstrated on a fully packaged SNEAM with a 30 µm active area diameter and a 14 GHz electro-optic bandwidth. High-capacity PAM-4 transmission at 112 and 160 Gb/s is demonstrated on an unpackaged SNEAM chip, with a 15 µm active area diameter and ultrawide electro-optic bandwidth (≫65GHz). Fiber transmission is investigated for direct detection link lengths up to 23 km at 44 Gb/s and 2 km at 112 and 160 Gb/s, the highest multi-level modulation rates achieved on a SNEAM.

4.
Sci Rep ; 7(1): 1728, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28496142

RESUMEN

This study aimed to investigate the role of src-homology protein tyrosine phosphatase-1 (SHP-1)-signal transducer and activator of transcription 3 (STAT3) pathway in liver fibrogenesis and the anti-fibrotic effect of SHP-1 agonist. The antifibrotic activity of SC-43, a sorafenib derivative with an enhanced SHP-1 activity, was evaluated in two fibrosis mouse models by carbon tetrachloride induction and bile duct ligation. Rat, human, and primary mouse hepatic stellate cells (HSCs) were used for mechanistic investigations. The results showed that SHP-1 protein primarily localized in fibrotic areas of human and mouse livers. SC-43 treatment reduced the activated HSCs and thus effectively prevented and regressed liver fibrosis in both fibrosis mouse models and improved mouse survival. In vitro studies revealed that SC-43 promoted HSC apoptosis, increased the SHP-1 activity and inhibited phospho-STAT3. The enhanced SHP-1 activity in HSCs significantly inhibited HSC proliferation, whereas SHP-1 inhibition rescued SC-43-induced HSC apoptosis. Furthermore, SC-43 interacted with the N-SH2 domain of SHP-1 to enhance the activity of SHP-1 as its antifibrotic mechanism. In conclusion, the SHP-1-STAT3 pathway is crucial in fibrogenesis. SC-43 significantly ameliorates liver fibrosis through SHP-1 upregulation. A SHP-1-targeted antifibrotic therapy may represent a druggable strategy for antifibrotic drug discovery.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Éteres Fenílicos/uso terapéutico , Compuestos de Fenilurea/uso terapéutico , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Animales , Apoptosis/efectos de los fármacos , Conductos Biliares/patología , Tetracloruro de Carbono , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Humanos , Ligadura , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Éteres Fenílicos/química , Éteres Fenílicos/farmacología , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Dominios Proteicos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Ratas , Factor de Transcripción STAT3/metabolismo , Sorafenib/química , Sorafenib/farmacología , Sorafenib/uso terapéutico
5.
Opt Express ; 22(22): 26854-61, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25401832

RESUMEN

Integrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses. This technique employs epitaxial growth of silicon in a pre-defined trench with taper structures. We fabricate and demonstrate a long-cavity hybrid laser with a narrow linewidth of 130 kHz and an output power of 1.5 mW using the proposed technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA