Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 175
1.
Nat Med ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824242

The vascular endothelial growth factor pathway plays a key role in the pathogenesis of gastric cancer. In the multicenter, double-blind phase 3 FRUTIGA trial, 703 patients with advanced gastric or gastroesophageal junction adenocarcinoma who progressed on fluorouracil- and platinum-containing chemotherapy were randomized (1:1) to receive fruquintinib (an inhibitor of vascular endothelial growth factor receptor-1/2/3; 4 mg orally, once daily) or placebo for 3 weeks, followed by 1 week off, plus paclitaxel (80 mg/m2 intravenously on days 1/8/15 per cycle). The study results were positive as one of the dual primary endpoints, progression-free survival (PFS), was met (median PFS, 5.6 months in the fruquintinib arm versus 2.7 months in the placebo arm; hazard ratio 0.57; 95% confidence interval 0.48-0.68; P < 0.0001). The other dual primary endpoint, overall survival (OS), was not met (median OS, 9.6 months versus 8.4 months; hazard ratio 0.96, 95% confidence interval 0.81-1.13; P = 0.6064). The most common grade ≥3 adverse events were neutropenia, leukopenia and anemia. Fruquintinib plus paclitaxel as a second-line treatment significantly improved PFS, but not OS, in Chinese patients with advanced gastric or gastroesophageal junction adenocarcinoma and could potentially be another treatment option for these patients. ClinicalTrials.gov registration: NCT03223376 .

2.
Biol Direct ; 19(1): 36, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715141

Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.


Cetuximab , Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Cetuximab/pharmacology , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Antineoplastic Agents, Immunological/pharmacology , Glycolysis , Cell Proliferation/drug effects
3.
Signal Transduct Target Ther ; 9(1): 79, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38565886

Fluoropyrimidine-based combination chemotherapy plus targeted therapy is the standard initial treatment for unresectable metastatic colorectal cancer (mCRC), but the prognosis remains poor. This phase 3 trial (ClinicalTrials.gov: NCT03950154) assessed the efficacy and adverse events (AEs) of the combination of PD-1 blockade-activated DC-CIK (PD1-T) cells with XELOX plus bevacizumab as a first-line therapy in patients with mCRC. A total of 202 participants were enrolled and randomly assigned in a 1:1 ratio to receive either first-line XELOX plus bevacizumab (the control group, n = 102) or the same regimen plus autologous PD1-T cell immunotherapy (the immunotherapy group, n = 100) every 21 days for up to 6 cycles, followed by maintenance treatment with capecitabine and bevacizumab. The main endpoint of the trial was progression-free survival (PFS). The median follow-up was 19.5 months. Median PFS was 14.8 months (95% CI, 11.6-18.0) for the immunotherapy group compared with 9.9 months (8.0-11.8) for the control group (hazard ratio [HR], 0.60 [95% CI, 0.40-0.88]; p = 0.009). Median overall survival (OS) was not reached for the immunotherapy group and 25.6 months (95% CI, 18.3-32.8) for the control group (HR, 0.57 [95% CI, 0.33-0.98]; p = 0.043). Grade 3 or higher AEs occurred in 20.0% of patients in the immunotherapy group and 23.5% in the control groups, with no toxicity-associated deaths reported. The addition of PD1-T cells to first-line XELOX plus bevacizumab demonstrates significant clinical improvement of PFS and OS with well tolerability in patients with previously untreated mCRC.


Colonic Neoplasms , Colorectal Neoplasms , Oxaloacetates , Humans , Bevacizumab/therapeutic use , Capecitabine/therapeutic use , Oxaliplatin , Colorectal Neoplasms/drug therapy , Fluorouracil/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colonic Neoplasms/drug therapy , Immunotherapy
4.
Cancer Cell Int ; 24(1): 109, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38504252

BACKGROUND: Noninvasive biomarkers for the assessment of response to chemotherapy in advanced breast cancer (BCa) are essential for optimized therapeutic decision-making. We evaluated the potential of soluble Periostin (POSTN) in circulation as a novel biomarker for chemotherapy efficacy monitoring. METHODS: Two hundred and thirty-one patients with different stages of BCa were included. Of those patients, 58 patients with inoperable metastatic disease receiving HER2-targeted or non-targeted chemotherapy were enrolled to assess the performances of markers in recapitulating the chemotherapy efficacy assessed by imaging. POSTN, together with CA153 or CEA at different time points (C0, C2, and C4) were determined. RESULTS: POSTN levels were significantly associated with tumor volume (P < 0.0001) and TNM stages (P < 0.0001) of BCa. For early monitoring, dynamics of POSTN could recapitulate the chemotherapy efficacy among all molecular subtypes (Cohen's weighted kappa = 0.638, P < 0.0001), much better than that of carcinoembryonic antigen (CEA) and cancer antigen 153 (CA15-3). For early partial response, superior performance of POSTN was observed (Cohen's weighted kappa = 0.827, P < 0.0001) in cases with baseline levels above 17.19 ng/mL. For long-term monitoring, the POSTN response was observed to be strongly consistent with the course of the disease. Moreover, progression free survival analysis showed that patients experienced a significant early decrease of POSTN tended to obtain more benefits from the treatments. CONCLUSIONS: The current study suggests that soluble POSTN is an informative serum biomarker to complement the current clinical approaches for early and long-term chemotherapy efficacy monitoring in advanced BCa.

5.
bioRxiv ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38328189

The influence of the metastasis promoting proteins mutant p53 (mtp53) and MDM2 on Cancer Persistent Repair (CPR) to promote cancer cell survival is understudied. Interactions between the DNA repair choice protein 53BP1 and wild type tumor suppressor protein p53 (wtp53) regulates cell cycle control. Cancer cells often express elevated levels of transcriptionally inactive missense mutant p53 (mtp53) that interacts with MDM2 and MDM4/MDMX (herein called MDMX). The ability of mtp53 to maintain a 53BP1 interaction while in the context of interactions with MDM2 and MDMX has not been described. We asked if MDM2 regulates chromatin-based phosphorylation events in the context of mtp53 by comparing the chromatin of T47D breast cancer cells with and without MDM2 in a phospho-peptide stable isotope labeling in cell culture (SILAC) screen. We found reduced phospho-53BP1 chromatin association, which we confirmed by chromatin fractionation and immunofluorescence in multiple breast cancer cell lines. We used the Proximity Ligation Assay (PLA) in breast cancer cell lines and detected 53BP1 in close proximity to mtp53, MDM2, and the DNA repair protein MDC1. Through disruption of the mtp53-MDM2 interaction, by either Nutlin 3a or a mtp53 R273H C-terminal deletion, we uncovered that mtp53 was required for MDM2-53BP1 interaction foci. Our data suggests that mtp53 works with MDM2 and 53BP1 to promote CPR and cell survival.

7.
Nat Commun ; 15(1): 137, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38167344

Radiation-induced gastrointestinal syndrome is a major complication and limiting factor for radiotherapy. Tumor suppressor p53 has a protective role in radiation-induced gastrointestinal toxicity. However, its underlying mechanism remains unclear. Here we report that regulating the IL12-p40/MHC class II signaling pathway is a critical mechanism by which p53 protects against radiation-induced gastrointestinal syndrome. p53 inhibits the expression of inflammatory cytokine IL12-p40, which in turn suppresses the expression of MHC class II on intestinal epithelial cells to suppress T cell activation and inflammation post-irradiation that causes intestinal stem cell damage. Anti-IL12-p40 neutralizing antibody inhibits inflammation and rescues the defects in intestinal epithelial regeneration post-irradiation in p53-deficient mice and prolongs mouse survival. These results uncover that the IL12-p40/MHC class II signaling mediates the essential role of p53 in ensuring intestinal stem cell function and proper immune reaction in response to radiation to protect mucosal epithelium, and suggest a potential therapeutic strategy to protect against radiation-induced gastrointestinal syndrome.


Radiation Injuries , Tumor Suppressor Protein p53 , Animals , Mice , Tumor Suppressor Protein p53/metabolism , Apoptosis/radiation effects , Intestinal Mucosa/metabolism , Radiation Injuries/metabolism , Inflammation/metabolism , Interleukin-12/metabolism
8.
Nat Commun ; 15(1): 627, 2024 Jan 20.
Article En | MEDLINE | ID: mdl-38245529

Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.


Cachexia , Neoplasms , Animals , Mice , Cachexia/genetics , Cachexia/metabolism , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Lipids , Lipogenesis/genetics , Liver/metabolism , Mice, Transgenic , Neoplasms/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
9.
Cancers (Basel) ; 15(23)2023 Nov 29.
Article En | MEDLINE | ID: mdl-38067347

Peritoneal metastasis (PM) is a common mode of distant metastasis in colorectal cancer (CRC) and has a poorer prognosis compared to other metastatic sites. The formation of PM foci depends on the synergistic effect of multiple molecules and the modulation of various components of the tumor microenvironment. The current treatment of CRC-PM is based on systemic chemotherapy. However, recent developments in local therapeutic modalities, such as cytoreductive surgery (CRS) and intraperitoneal chemotherapy (IPC), have improved the survival of these patients. This article reviews the research progress on the mechanism, characteristics, diagnosis, and treatment strategies of CRC-PM, and discusses the current challenges, so as to deepen the understanding of CRC-PM among clinicians.

10.
Cell Stem Cell ; 30(11): 1520-1537.e8, 2023 11 02.
Article En | MEDLINE | ID: mdl-37865088

The gut epithelium has a remarkable ability to recover from damage. We employed a combination of high-throughput sequencing approaches, mouse genetics, and murine and human organoids and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. The depletion of macrophages or genetic disruption of TGFB signaling significantly impaired the regenerative response. Intestinal regeneration is characterized by the induction of a fetal-like transcriptional signature during repair. In organoid culture, TGFB1 treatment was necessary and sufficient to induce the fetal-like/regenerative state. Mesenchymal cells were also responsive to TGFB1 and enhanced the regenerative response. Mechanistically, pro-regenerative factors, YAP/TEAD and SOX9, are activated in the epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for cellular therapy.


Intestinal Mucosa , Intestines , Animals , Humans , Mice , Colon , Intestinal Mucosa/metabolism , Organoids/metabolism , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism
11.
BMC Cancer ; 23(1): 825, 2023 Sep 04.
Article En | MEDLINE | ID: mdl-37667220

BACKGROUND: Effective identification and development of new molecular methods for the diagnosis, treatment and prognosis of lung adenocarcinoma (LUAD) remains an urgent clinical need. DNA methylation patterns at cytosine bases in the genome are closely related to gene expression, and abnormal DNA methylation is frequently observed in various cancers. The ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (5mC) and promote locus-specific DNA methylation reversal. This study aimed to explore the role of the TET2 protein and its downstream effector, 5-hmC/5-mC DNA modification, in LUAD progression. METHODS: The expression of TET2 was analysed by real-time PCR, Western blotting and immunohistochemistry. The 5-hmC DNA content was determined by a colorimetric kit. Activation of the cGAS-STING signalling pathway was evaluated by Western blotting. CCK-8, wound healing and Transwell assays were performed to evaluate the effect of TET2 on cell proliferation, migration and invasion abilities. A xenograft model was used to analyse the effect of TET2 on the tumorigenic ability of A549 cells. RESULTS: TET2 overexpression decreased proliferation and metastasis of A549 and H1975 cells in vitro and in vivo. However, TET2 knockdown dramatically enhanced the proliferation, migration and invasion of A549 and H1975 cells. Mechanistically, activation of the cGAS-STING signalling pathway is critical for the TET2-mediated suppression of LUAD cell tumorigenesis and metastasis. CONCLUSION: In this study, we demonstrate a tumour suppressor role of TET2 in LUAD, providing new potential molecular therapeutic targets and clinical therapies for patients with non-small cell lung cancer.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , DNA-Binding Proteins , Dioxygenases , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Carcinogenesis , Cell Proliferation/genetics , Dioxygenases/genetics , DNA , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , Nucleotidyltransferases/genetics
13.
BMC Complement Med Ther ; 23(1): 239, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37461034

INTRODUCTION: Colon cancer remains one of the most prevalent cancers worldwide. Unfortunately, there are no recognized and effective therapeutic strategies to prevent tumor recurrence after radical resection and chemotherapy, and the disease-free survival (DFS) in patients with stage IIIB or IIIC disease remains unsatisfactory. Xian-Lian-Jie-Du optimization decoction (XLJDOD) is a Chinese herbal medicine (CHM) empirical prescription, which has been validated experimentally and clinically that could inhibit the progression of colorectal cancer and ameliorate the symptoms. The purpose of this study is to evaluate the efficacy and safety of XLJDOD in prevention of recurrence of colon cancer. METHODS: This study is a multi-center, double-blind, randomized, placebo-controlled trial conducted at 13 hospitals of China. Following the completion of surgery and adjuvant 5- fluorouracil-based chemotherapy, a total of 730 subjects with stage IIIB or IIIC colon cancer will be randomized in a 1:1 ratio to an intervention group (n = 365; XLJDOD compound granule) and a control group (n = 365; Placebo). Patients will receive 6-month treatments and be followed up with 3 monthly assessments for 2 years. The primary outcome is 2-year DFS rate and the secondary outcomes are 1, 2-year relapse rate (RR), overall survival (OS) and quality of life (QoL). Safety outcomes such as adverse events will be also assessed. A small number of subgroup analysis will be carried out to explore the heterogeneity of effects of XLJDOD. DISCUSSION: The outcomes from this randomized controlled trial will provide objective evidences to evaluate XLJDOD's role as an adjuvant treatment in colon cancer. TRIAL REGISTRATION: www. CLINICALTRIALS: gov , identifier: NCT05709249. Registered on 31 Jan 2023.


Colonic Neoplasms , Quality of Life , Humans , Treatment Outcome , Colonic Neoplasms/drug therapy , Disease-Free Survival , Double-Blind Method , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
14.
J Clin Invest ; 133(6)2023 03 15.
Article En | MEDLINE | ID: mdl-36749630

The tumor suppressor TP53 is the most frequently mutated gene in human cancers. Mutant p53 (mutp53) proteins often accumulate to very high levels in human cancers to promote cancer progression through the gain-of-function (GOF) mechanism. Currently, the mechanism underlying mutp53 accumulation and GOF is incompletely understood. Here, we identified TRIM21 as a critical E3 ubiquitin ligase of mutp53 by screening for specific mutp53-interacting proteins. TRIM21 directly interacted with mutp53 but not WT p53, resulting in ubiquitination and degradation of mutp53 to suppress mutp53 GOF in tumorigenesis. TRIM21 deficiency in cancer cells promoted mutp53 accumulation and GOF in tumorigenesis. Compared with p53R172H knockin mice, which displayed mutp53 accumulation specifically in tumors but not normal tissues, TRIM21 deletion in p53R172H knockin mice resulted in mutp53 accumulation in normal tissues, an earlier tumor onset, and a shortened life span of mice. Furthermore, TRIM21 was frequently downregulated in some human cancers, including colorectal and breast cancers, and low TRIM21 expression was associated with poor prognosis in patients with cancers carrying mutp53. Our results revealed a critical mechanism underlying mutp53 accumulation in cancers and also uncovered an important tumor-suppressive function of TRIM21 and its mechanism in cancers carrying mutp53.


Gain of Function Mutation , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Mutation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
15.
bioRxiv ; 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36711781

The adult gut epithelium has a remarkable ability to recover from damage. To achieve cellular therapies aimed at restoring and/or replacing defective gastrointestinal tissue, it is important to understand the natural mechanisms of tissue regeneration. We employed a combination of high throughput sequencing approaches, mouse genetic models, and murine and human organoid models, and identified a role for TGFB signaling during intestinal regeneration following injury. At 2 days following irradiation (IR)-induced damage of intestinal crypts, a surge in TGFB1 expression is mediated by monocyte/macrophage cells at the location of damage. Depletion of macrophages or genetic disruption of TGFB-signaling significantly impaired the regenerative response following irradiation. Murine intestinal regeneration is also characterized by a process where a fetal transcriptional signature is induced during repair. In organoid culture, TGFB1-treatment was necessary and sufficient to induce a transcriptomic shift to the fetal-like/regenerative state. The regenerative response was enhanced by the function of mesenchymal cells, which are also primed for regeneration by TGFB1. Mechanistically, integration of ATAC-seq, scRNA-seq, and ChIP-seq suggest that a regenerative YAP-SOX9 transcriptional circuit is activated in epithelium exposed to TGFB1. Finally, pre-treatment with TGFB1 enhanced the ability of primary epithelial cultures to engraft into damaged murine colon, suggesting promise for the application of the TGFB-induced regenerative circuit in cellular therapy.

16.
Cell Death Dis ; 14(1): 61, 2023 01 26.
Article En | MEDLINE | ID: mdl-36702816

LKB1 and KRAS are the third most frequent co-mutations detected in non-small cell lung cancer (NSCLC) and cause aggressive tumor growth. Unfortunately, treatment with RAS-RAF-MEK-ERK pathway inhibitors has minimal therapeutic efficacy in LKB1-mutant KRAS-driven NSCLC. Autophagy, an intracellular nutrient scavenging pathway, compensates for Lkb1 loss to support Kras-driven lung tumor growth. Here we preclinically evaluate the possibility of autophagy inhibition together with MEK inhibition as a treatment for Kras-driven lung tumors. We found that the combination of the autophagy inhibitor hydroxychloroquine (HCQ) and the MEK inhibitor Trametinib displays synergistic anti-proliferative activity in KrasG12D/+;Lkb1-/- (KL) lung cancer cells, but not in KrasG12D/+;p53-/- (KP) lung cancer cells. In vivo studies using tumor allografts, genetically engineered mouse models (GEMMs) and patient-derived xenografts (PDXs) showed anti-tumor activity of the combination of HCQ and Trametinib on KL but not KP tumors. We further found that the combination treatment significantly reduced mitochondrial membrane potential, basal respiration, and ATP production, while also increasing lipid peroxidation, indicative of ferroptosis, in KL tumor-derived cell lines (TDCLs) and KL tumors compared to treatment with single agents. Moreover, the reduced tumor growth by the combination treatment was rescued by ferroptosis inhibitor. Taken together, we demonstrate that autophagy upregulation in KL tumors causes resistance to Trametinib by inhibiting ferroptosis. Therefore, a combination of autophagy and MEK inhibition could be a novel therapeutic strategy to specifically treat NSCLC bearing co-mutations of LKB1 and KRAS.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Ferroptosis , Lung Neoplasms , Mice , Animals , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ferroptosis/genetics , Protein Serine-Threonine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Mitogen-Activated Protein Kinase Kinases/metabolism , Autophagy , Cell Line, Tumor , Mutation
17.
Clin Colorectal Cancer ; 22(1): 136-142, 2023 03.
Article En | MEDLINE | ID: mdl-36463020

INTRODUCTION: To retrospectively evaluate the safety and efficacy of computed tomography (CT)-guided iodine-125 (125I) seed implantation for patients with abdominal incision metastases from colorectal cancer. MATERIALS AND METHODS: Data of patients with abdominal incision metastases of colorectal cancer from November 2010 to October 2020 were retrospectively reviewed. Each incisional metastasis was percutaneously treated with 125I seed implantation under CT guidance. Follow-up contrast-enhanced CT was reviewed, and the outcomes were evaluated in terms of objective response rate, complications, and overall survival. RESULTS: A total of 17 patients were enrolled in this study. The median follow-up was 18 months (range, 2.7-22.1 months). At 3, 6, 12, and 18 months after the treatment, objective response rate was 52.9%, 63.6%, 33.3%, and 0%, respectively. A small amount of local hematoma occurred in two patients and resolved spontaneously without any treatment. Two patients experienced a minor displacement of radioactive seeds with no related symptoms. Severe complications, such as massive bleeding and radiation injury, were not observed. No ≥ grade 3 adverse events were identified. By the end of follow-up, 14 patients died of multiple hematogenous metastases. The one-year overall survival rate was 41.6%, and the median overall survival was 8.6 months. CONCLUSION: CT-guided 125I seed implantation brachytherapy is safe and feasible for patients with abdominal incision metastases from colorectal cancer.


Brachytherapy , Colorectal Neoplasms , Humans , Treatment Outcome , Brachytherapy/adverse effects , Brachytherapy/methods , Retrospective Studies , Tomography, X-Ray Computed/methods , Colorectal Neoplasms/etiology
18.
Mol Ther ; 31(2): 331-343, 2023 02 01.
Article En | MEDLINE | ID: mdl-36575793

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the interleukin-6 (IL-6) superfamily. LIF was initially discovered as a factor to induce the differentiation of myeloid leukemia cells and thus inhibit their proliferation. Subsequent studies have highlighted the multi-functions of LIF under a wide variety of physiological and pathological conditions in a highly cell-, tissue-, and context-dependent manner. Emerging evidence has demonstrated that LIF plays an essential role in the stem cell niche, where it maintains the homeostasis and regeneration of multiple somatic tissues, including intestine, neuron, and muscle. Further, LIF exerts a crucial regulatory role in immunity and functions as a protective factor against many immunopathological diseases, such as infection, inflammatory bowel disease (IBD), and graft-verse-host disease (GVHD). It is worth noting that while LIF displays a tumor-suppressive function in leukemia, recent studies have highlighted the oncogenic role of LIF in many types of solid tumors, further demonstrating the complexities and context-dependent effects of LIF. In this review, we summarize the recent insights into the roles and mechanisms of LIF in stem cell homeostasis and regeneration, immunity, and cancer, and discuss the potential therapeutic options for human diseases by modulating LIF levels and functions.


Growth Inhibitors , Interleukin-6 , Humans , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/metabolism , Growth Inhibitors/pharmacology , Growth Inhibitors/physiology , Cell Differentiation , Leukemia Inhibitory Factor Receptor alpha Subunit , Lymphokines/pharmacology , Lymphokines/physiology
19.
Int J Cancer ; 152(4): 749-760, 2023 02 15.
Article En | MEDLINE | ID: mdl-36121651

First-line chemotherapy for advanced/metastatic human epidermal growth factor receptor 2 (HER2)-negative gastric/gastroesophageal junction cancer (GC/GEJC) has poor median overall survival (OS; <1 year). We report efficacy and safety results from Chinese patients in the phase III global CheckMate 649 study of nivolumab plus chemotherapy vs chemotherapy for the first-line treatment of GC/GEJC/esophageal adenocarcinoma (EAC). Chinese patients with previously untreated advanced or metastatic GC/GEJC/EAC were randomized to receive nivolumab (360 mg Q3W or 240 mg Q2W) plus chemotherapy (XELOX [capecitabine and oxaliplatin] Q3W or FOLFOX [oxaliplatin, leucovorin and 5-fluorouracil] Q2W), nivolumab plus ipilimumab (not reported) or chemotherapy alone. OS, blinded independent central review-assessed progression-free survival (PFS), objective response rate (ORR), duration of response (DOR) and safety are reported. Of 1581 patients enrolled and randomized, 208 were Chinese. In these patients, nivolumab plus chemotherapy resulted in clinically meaningful improvement in median OS (14.3 vs 10.2 months; HR 0.61 [95% CI: 0.44-0.85]), median PFS (8.3 vs 5.6 months; HR 0.57 [95% CI: 0.40-0.80]), ORR (66% vs 45%) and median DOR (12.2 vs 5.6 months) vs chemotherapy, respectively. The safety profile was acceptable, with no new safety signals observed. Consistent with results from the global primary analysis of CheckMate 649, nivolumab plus chemotherapy demonstrated a clinically meaningful improvement in OS and PFS and higher response rate vs chemotherapy and an acceptable safety profile in Chinese patients. Nivolumab plus chemotherapy represents a new standard first-line treatment for Chinese patients with non-HER2-positive advanced GC/GEJC/EAC.


Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Humans , Nivolumab/therapeutic use , Oxaliplatin/therapeutic use , East Asian People , Esophagogastric Junction/pathology , Adenocarcinoma/pathology , Stomach Neoplasms/pathology , Esophageal Neoplasms/pathology , Ipilimumab/therapeutic use , Antineoplastic Combined Chemotherapy Protocols
20.
Cell Death Differ ; 30(1): 111-124, 2023 01.
Article En | MEDLINE | ID: mdl-35978049

Although radiotherapy is an essential modality in the treatment of colorectal cancer (CRC), the incidence of radioresistance remains high clinically. Long noncoding RNAs (lncRNAs) reportedly play critical roles in CRC radioresistance by regulating genes or proteins at the transcriptional or post-translational levels. This study aimed to identify novel lncRNAs involved in radioresistance. We found that SP100-AS1 (lncRNA targeting antisense sequence of SP100 gene) was upregulated in radioresistant CRC patient tissues using RNA-seq analysis. Importantly, knockdown of SP100-AS1 significantly reduced radioresistance, cell proliferation, and tumor formation in vitro and in vivo. Mechanistically, mass spectrometry and bioinformatics analyses were used to identify the interacting proteins and microRNAs of SP100-AS1, respectively. Moreover, SP100-AS1 was found to interact with and stabilize ATG3 protein through the ubiquitination-dependent proteasome pathway. In addition, it could serve as a sponge for miR-622, which targeted ATG3 mRNA and affected autophagic activity. Thus, lncRNA SP100-AS1 could act as a radioresistance factor in CRC patients via RNA sponging and protein stabilizing mechanisms. In conclusion, the present study indicates that SP100-AS1/miR-622/ATG3 axis contributes to radioresistance and autophagic activity in CRC patients, suggesting it has huge prospects as a therapeutic target for improving CRC response to radiation therapy.


Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Autoantigens , Antigens, Nuclear/genetics , Autophagy-Related Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism
...