Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pediatr ; 12: 1333575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425662

RESUMEN

Objective: The aim of this study is to summarize and demonstrate the different sterilization methods and surgical techniques for open fractures with impacted bone segments in the lower limbs. Methods: A retrospective analysis was conducted on the clinical characteristics, treatment methods, and outcomes of a case involving a 10.5 cm extruded segment of the femur in a 9-year-old male with a right femoral comminuted fracture treated at our center. Additionally, a retrospective review and summary were conducted on all reported cases of open fractures with impacted bone segments in the lower limbs. Results: Our center treated a 9-year and 11-month-old male child who presented with a Gustilo type IIIB open fracture of the femur along with a large segment of the femur being ejected as a result of a car accident. The child was resuscitated to correct hypovolemic shock, underwent emergency wound debridement, and had Ilizarov external fixation of the femur. The ejected femur segment was sterilized using ethylene oxide and re-implanted four days after the injury. A literature review showed that out of the cases of open fractures with impacted bone segments in the lower limbs, there were 14 cases involving the femur and 5 cases involving the tibia. Among them, sterilization was performed using povidone-iodine in 6 cases, high-pressure steam sterilization in 3 cases, and other methods including gamma-ray irradiation and soaking in antibacterial solution were used in the remaining cases. In terms of surgical methods, 7 cases were fixed with locking plates, 3 cases were fixed with external fixation devices, 1 case was immobilized in a cast, 1 case was fixed with an intramedullary rod, and 4 cases involved a combination of external fixation and internal fixation. The average time for re-implantation was 7.6 days after the injury. There were no serious complications such as infection or non-union observed in any of the cases during follow-up. Conclusion: Ethylene oxide can be considered a reliable choice for the reimplantation of displaced bone segments in open fractures after sterilization.

2.
Acta Pharm Sin B ; 14(3): 1166-1186, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487008

RESUMEN

Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.

3.
Int J Orthop Trauma Nurs ; 53: 101051, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37858520

RESUMEN

OBJECTIVE: The purpose of this study was to explore the effect of fast-track surgery combined with a clinical nursing pathway on the recovery and complications of congenital pseudarthrosis of tibia. METHODS: 82 children with congenital pseudarthrosis of tibia admitted from January 2019 to December 2020 were selected as the study subjects. The control group received routine clinical nursing pathway while the intervention group received a fast-track surgery combined with a clinical nursing pathway. The fasting and water deprivation time were arranged according to the pre operation time, and the accelerated rehabilitation nursing models such as progressive diet management, multi-functional analgesia, and early sequential functional exercise were given after the operation. After collecting data on perioperative diet, postoperative recovery, postoperative complications, and family satisfaction from both groups of patients in a large hospital in China, a comparative analysis was conducted. RESULTS: The retention time of negative pressure drainage tube, urinary catheter and hospital stay in the intervention group were shorter than those in the control group (P < 0.05); The incidence of complications in the intervention group (5%) was significantly lower than that in the control group (21.42%) (P = 0.029). The family satisfaction of the intervention group (95.00%) was higher than that of the control group (80.95%). CONCLUSION: Strengthening the concept of fast-track surgery nursing in the combined operation of congenital pseudarthrosis of tibia can shorten the hospitalization time of children, reduce the occurrence of postoperative complications and improve their family satisfaction.

4.
BMC Musculoskelet Disord ; 24(1): 482, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312176

RESUMEN

OBJECTIVES: To investigate the clinical efficacy and safety of open reduction through anterior minimally invasive approach in the treatment of children with developmental dysplasia of the hip. METHOD: A total of 23 patients (25 hips) less than 2 years with developmental dysplasia of the hip treated by open reduction through anterior minimally invasive approach were treated in our hospital from August 2016 to March 2019. Through the anterior minimally invasive approach, we enter from the gap between sartorius muscle and tensor fasciae lata without cutting off rectus femoris muscle, which can effectively expose the joint capsule and reduce the damage to medial blood vessels and nerves. The operation time, incision length, intraoperative bleeding, hospital stay and surgical complications were observed. The progression of developmental dysplasia of the hip and avascular necrosis of the femoral head were evaluated by imaging examination. RESULT: All patients were performed with follow-up visit for an average of 22 months. The average incision length was 2.5 cm, the average operation time was 26 min, the average intraoperative bleeding was 12ml, and the average hospital stay was 4.9 days. All patients received concentric reduction immediately after operation, and no re-dislocation occurred. At the last follow-up visit, the acetabular index was (25.8 ± 6.4°). During the follow-up visit, X-ray showed avascular necrosis of the femoral head in 4 hips (16%). CONCLUSION: open reduction through anterior minimally invasive approach can achieve good clinical effect in the treatment of infantile developmental dysplasia of the hip.


Asunto(s)
Displasia del Desarrollo de la Cadera , Necrosis de la Cabeza Femoral , Humanos , Niño , Necrosis de la Cabeza Femoral/diagnóstico por imagen , Necrosis de la Cabeza Femoral/etiología , Necrosis de la Cabeza Femoral/cirugía , Acetábulo , Cabeza Femoral , Hospitales , Hiperplasia
5.
Orthop Surg ; 14(9): 1981-1988, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35856419

RESUMEN

OBJECTIVE: There has been a lack of suitable epiphysis blocking materials due to the characteristics of less tissue coverage and narrow epiphysis in children's distal tibial medial malleolus. Therefore, this study is to investigate the clinical efficacy and safety of a new "U"-shaped staple in the treatment of postoperative ankle valgus of congenital pseudarthrosis of the tibia (CPT). METHOD: According to the inclusion and exclusion criteria, 33 patients with postoperative ankle valgus of CPT were treated with new "U"-shaped staples from May 2013 to September 2019. The deformity of ankle valgus was gradually corrected by implanting a new "U"-shaped staple on the medial side of the distal tibia. Clinical indexes such as the operation time, intraoperative bleeding and hospital stay were observed. Tibiotalar angle was selected as the evaluation index of ankle valgus. American Orthopedic Foot & Ankle Society (AOFAS) scale was used for clinical evaluation of ankle function. The tibiotalar angle, deformity correction rate and complications were evaluated by preoperative, postoperative and last follow-up imaging data. Student's t-test was used for statistical analysis. RESULTS: Thirty-three patients, including 12 males and 21 females were included. All the patients were followed up for at least 14 months, with an average of 35 months. The average operation time was 23 (15-40) min, the average amount of intraoperative bleeding was 7.5 (4-10) mL, and the average hospital stay was 4.2 (3-6) days. The intraoperative tibiotalar angles of all patients were 74.2° ± 4.6°, the tibiotalar angle were 86.8° ± 4.9° when internal fixation was removed, and the tibiotalar angles at the last follow-up were 84.3° ± 5.9°. The average orthopedic rate was 0.68° per month. No patients suffered from serious complications such as screw prolapse, osteomyelitis, wound infection, etc. Postoperative wound pain complications occurred in two patients, which were relieved after conservative treatment. The AOFAS score improved from 46.2 ± 9.4 before the operation to 74.6 ± 5.7 at the last follow-up (P < 0.01). The ankle movement was good without joint stiffness. There was no epiphyseal plate injury after the removal of internal fixation. CONCLUSION: The new "U"-shaped staple is characterized by simple implantation, low notch, lower risk of fixation failure and close fitting with cortical bone. It is a safe and effective internal fixation system for the treatment of ankle valgus in children.


Asunto(s)
Seudoartrosis , Tibia , Tobillo , Articulación del Tobillo/cirugía , Niño , Femenino , Humanos , Masculino , Complicaciones Posoperatorias , Seudoartrosis/congénito , Seudoartrosis/cirugía , Estudios Retrospectivos , Tibia/cirugía , Resultado del Tratamiento
6.
Nat Commun ; 13(1): 1453, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304471

RESUMEN

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Animales , Matriz Ósea , Diferenciación Celular , Femenino , Ratones , MicroARNs/genética , Osteogénesis
7.
J Pediatr Orthop ; 42(5): e441-e447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35200210

RESUMEN

BACKGROUND: Congenital pseudarthrosis of the tibia (CPT) is a complex and serious disease in orthopaedics which often requires multiple operations for treatment. Postoperative ankle valgus deformity is easily seen after the operation of CPT. The aim of this study is to retrospectively evaluate the effectiveness of three different implants for treating postoperative ankle valgus after CPT. METHODS: A total of 41 patients with postoperative ankle valgus after CPT from December 2010 to July 2019 were selected. Of these 41 patients, 23 patients were treated with "U"-shaped staple, 10 patients were treated with hollow screw and 8 patients were treated with cortical bone screw. The evaluation index was tibiotalar angle. The general data, preoperative, postoperative, and final follow-up imaging data were recorded, and the deformity correction rate and complications were compared. RESULTS: All the patients were performed with postoperative follow-up visit for at least 12 months (31 mo on average). In the "U"-shaped staple group, the preoperative tibiotalar angle was 74.8±4.8 degrees, the tibiotalar angle was 85.8±4.5 degrees when the internal fixation was removed; in the hollow screw group, the average preoperative tibiotalar angle was 72.2±6.1 degrees, the average tibiotalar angle was 88.4±5.1 degrees when the internal fixation was removed; in the cortical bone screw group, the average preoperative tibiotalar angle was 75.1±4.2 degrees, the average tibiotalar angle was 88.4±5.1 degrees when the internal fixation was removed. The correction rate of the "U"-shaped staple group was 0.71 degrees/month, with that of in the hollow screw group and cortical bone screw group being 0.64 degrees/month and 0.61 degrees/month, respectively. There was no significant difference in the correction rate between the 3 groups. One case of internal fixation complication was reported in the hollow screw group; 2 cases of missing correction effect were reported, 1 in cortical bone screw group and 1 in hollow screw group; and 2 cases showing symptom of wound pain were reported in the "U"-shaped staple group. CONCLUSION: Ankle valgus is a common postoperative complication of congenital tibial pseudarthrosis. Temporary hemiepiphysiodesis with "U"-shaped staple or screws is an effective treatment for postoperative ankle valgus deformity of CPT in children. LEVEL OF EVIDENCE: Level IV-retrospective study.


Asunto(s)
Seudoartrosis , Tibia , Tobillo , Articulación del Tobillo/diagnóstico por imagen , Articulación del Tobillo/cirugía , Niño , Fijación Interna de Fracturas , Humanos , Seudoartrosis/congénito , Seudoartrosis/cirugía , Estudios Retrospectivos , Tibia/anomalías , Tibia/cirugía , Resultado del Tratamiento
8.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719888

RESUMEN

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Asunto(s)
Adipocitos/metabolismo , Huesos/metabolismo , Neuropéptido Y/metabolismo , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Adipogénesis/fisiología , Animales , Huesos/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocitos/metabolismo , Osteogénesis/fisiología , Osteoporosis/fisiopatología
10.
Theranostics ; 11(17): 8152-8171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373734

RESUMEN

Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Sepsis/tratamiento farmacológico , Plata/farmacología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Fructosa/farmacología , Proteínas Hemolisinas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Lipopolisacáridos/antagonistas & inhibidores , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Nanopartículas/uso terapéutico , Sepsis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
11.
J Cell Mol Med ; 25(12): 5525-5533, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960660

RESUMEN

Osteoporosis is one of the most common metabolic bone diseases affecting millions of people. We previously found that harmine prevents bone loss in ovariectomized mice via increasing preosteoclast platelet-derived growth factor-BB (PDGF-BB) production and type H vessel formation. However, the molecular mechanisms by which harmine promotes preosteoclast PDGF-BB generation are still unclear. In this study, we revealed that inhibitor of DNA binding-2 (Id2) and activator protein-1 (AP-1) were important factors implicated in harmine-enhanced preosteoclast PDGF-BB production. Exposure of RANKL-induced Primary bone marrow macrophages (BMMs), isolated from tibiae and femora of mice, to harmine increased the protein levels of Id2 and AP-1. Knockdown of Id2 by Id2-siRNA reduced the number of preosteoclasts as well as secretion of PDGF-BB in RANKL-stimulated BMMs administrated with harmine. Inhibition of c-Fos or c-Jun (components of AP-1) both reversed the stimulatory effect of harmine on preosteoclast PDGF-BB production. Dual-luciferase reporter assay analyses determined that PDGF-BB was the direct target of AP-1 which was up-regulated by harmine treatment. In conclusion, our data demonstrated a novel mechanism involving in the production of PDGF-BB increased by harmine, which may provide potential therapeutic targets for bone loss diseases.


Asunto(s)
Becaplermina/metabolismo , Médula Ósea/efectos de los fármacos , Harmina/farmacología , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Macrófagos/efectos de los fármacos , Osteoclastos/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Médula Ósea/metabolismo , Células Cultivadas , Alucinógenos/farmacología , Proteína 2 Inhibidora de la Diferenciación/genética , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Osteoclastos/citología , Factor de Transcripción AP-1/genética
12.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977075

RESUMEN

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Asunto(s)
Densidad Ósea/fisiología , Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/fisiología , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Factores de Edad , Anciano , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
13.
Int J Nanomedicine ; 16: 2949-2963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907401

RESUMEN

PURPOSE: Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS: Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS: Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION: Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.


Asunto(s)
Linfocitos T CD8-positivos/efectos de los fármacos , Vesículas Extracelulares/inmunología , Macrófagos/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Akkermansia/química , Animales , Antineoplásicos Inmunológicos/química , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Inmunofenotipificación , Inmunoterapia/métodos , Interferón gamma/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos C57BL , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología
14.
Theranostics ; 11(5): 2395-2409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500732

RESUMEN

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Autofagia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología
15.
Autophagy ; 17(10): 2766-2782, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33143524

RESUMEN

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Asunto(s)
Envejecimiento , Autofagia , Proteínas de Ciclo Celular , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Transporte de Membrana , Células Madre Mesenquimatosas , Adipogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Osteoporosis , Microtomografía por Rayos X
16.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097529

RESUMEN

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Asunto(s)
Quemaduras , Nanopartículas del Metal , Resinas Acrílicas , Animales , Antibacterianos/farmacología , Quemaduras/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ratones , Plata/farmacología , Cicatrización de Heridas
17.
Theranostics ; 10(17): 7710-7729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685015

RESUMEN

Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Osteosarcoma/tratamiento farmacológico , Plata/administración & dosificación , Adolescente , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Femenino , Fructosa/química , Humanos , Lactante , Recién Nacido , Inyecciones Intravenosas , Neoplasias Pulmonares/secundario , Masculino , Nanopartículas del Metal/química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteosarcoma/secundario , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eliminación Renal , Transducción de Señal/efectos de los fármacos , Plata/farmacocinética , Plata/orina , Distribución Tisular , Efecto Warburg en Oncología/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
18.
Acta Biomater ; 111: 208-220, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32447063

RESUMEN

Osteonecrosis of the femoral head (ONFH) frequently occurs after glucocorticoid (GC) treatment. Extracellular vesicles (EVs) are important nano-sized paracrine mediators of intercellular crosstalk. This study aimed to determine whether EVs from human urine-derived stem cells (USC-EVs) could protect against GC-induced ONFH and focused on the impacts of USC-EVs on angiogenesis and apoptosis to explore the mechanism by which USC-EVs attenuated GC-induced ONFH. The results in vivo showed that the intravenous administration of USC-EVs at the early stage of GC exposure could rescue angiogenesis impairment, reduce apoptosis of trabecular bone and marrow cells, prevent trabecular bone destruction and improve bone microarchitecture in the femoral heads of rats. In vitro, USC-EVs reversed the GC-induced suppression of endothelial angiogenesis and activation of apoptosis. Deleted in malignant brain tumors 1 (DMBT1) and tissue inhibitor of metalloproteinases 1 (TIMP1) proteins were enriched in USC-EVs and essential for the USC-EVs-induced pro-angiogenic and anti-apoptotic effects in GC-treated cells, respectively. Knockdown of TIMP1 attenuated the protective effects of USC-EVs against GC-induced ONFH. Our study suggests that USC-EVs are a promising nano-sized agent for the prevention of GC-induced ONFH by delivering pro-angiogenic DMBT1 and anti-apoptotic TIMP1. STATEMENT OF SIGNIFICANCE: This study demonstrates that the intravenous injection of extracellular vesicles from human urine-derived stem cells (USC-EVs) at the early stage of glucocorticoid (GC) exposure efficiently protects the rats from the GC-induced osteonecrosis of the femoral head (ONFH). Moreover, this study identifies that the promotion of angiogenesis and inhibition of apoptosis by transferring pro-angiogenic DMBT1 and anti-apoptotic TIMP1 proteins contribute importantly to the USC-EVs-induced protective effects against GC-induced ONFH. This study suggests the promising prospect of USC-EVs as a new nano-sized agent for protecting against GC-induced ONFH, and the potential of DMBT1 and TIMP1 as the molecular targets for further augmenting the protective function of USC-EVs.


Asunto(s)
Vesículas Extracelulares , Osteonecrosis , Animales , Proteínas de Unión al Calcio , Proliferación Celular , Proteínas de Unión al ADN , Cabeza Femoral , Glucocorticoides , Humanos , Ratas , Células Madre , Inhibidor Tisular de Metaloproteinasa-1 , Proteínas Supresoras de Tumor
19.
Exp Cell Res ; 394(1): 112115, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473224

RESUMEN

Postmenopausal osteoporosis is very common in women. Currently, many kinds of new drugs are being developed for this disease. Postmenopausal osteoporosis is closely related to overactivity of osteoclasts in body. Shikonin is purple red naphthoquinone pigment extracted from lithospermum, which has anti-inflammation, antivirus, anticancer and other bioactivities. At the same time, it has been proved that shikonin can promote the proliferation and differentiation of osteoblasts, but its influence on osteoclasts and molecular mechanism are unknown. Our study showed that shikonin could inhibit the activity and formation of RANKL-mediated osteoclasts depending on dose without affecting the activity of bone marrow macrophages (BMM). In addition, we have also found that shikonin can inhibit the expression of specific marker gene of osteoclasts, including nuclear factor of activated T cells cytoplasmic 1 (NFATc1), cathepsin K (Ctsk), tartrate resistant acid phosphatase (TRAcP) and calcitonin receptor. Shikonin also could promote the proliferation of MC3T3-E1, increasing the expression of mRNA related to osteogenesis, like the expression of bone morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN). Luciferase reporter gene assay and Western blot analysis further indicated that shikonin could inhibit the activity of RANKL-induced NF-κB and NFAT receptors. Moreover, shikonin can also slow down bone loss of ovariectomized (OVX) mice by inhibiting the activity of osteoclasts. This work explains the molecular mechanism of shikonin in RANKL-mediated formation of osteoclasts, and reveals the potential of further developing shikonin into a new drug for prevention and treatment of postmenopausal osteoporosis.


Asunto(s)
FN-kappa B/efectos de los fármacos , Factores de Transcripción NFATC/efectos de los fármacos , Naftoquinonas/farmacología , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Animales , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Diferenciación Celular , Ratones , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Naftoquinonas/metabolismo , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoporosis/metabolismo
20.
Theranostics ; 10(8): 3779-3792, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32206122

RESUMEN

Healing of the chronic diabetic ulceration and large burns remains a clinical challenge. Therapeutic fasting has been shown to improve health. Our study tested whether fasting facilitates diabetic and burn wound healing and explored the underlying mechanism. Methods: The effects of fasting on diabetic and burn wound healing were evaluated by analyzing the rates of wound closure, re-epithelialization, scar formation, collagen deposition, skin cell proliferation and neovascularization using histological analyses and immunostaining. In vitro functional assays were conducted to assess fasting and refeeding on the angiogenic activities of endothelial cells. Transcriptome sequencing was employed to identify the differentially expressed genes in endothelial cells after fasting treatment and the role of the candidate genes in the fasting-induced promotion of angiogenesis was demonstrated. Results: Two times of 24-h fasting in a week after but especially before wound injury efficiently induced faster wound closure, better epidermal and dermal regeneration, less scar formation and higher level of angiogenesis in mice with diabetic or burn wounds. In vitro, fasting alone by serum deprivation did not increase, but rather reduced the abilities of endothelial cell to proliferate, migrate and form vessel-like tubes. However, subsequent refeeding did not merely rescue, but further augmented the angiogenic activities of endothelial cells. Transcriptome sequencing revealed that fasting itself, but not the following refeeding, induced a prominent upregulation of a variety of pro-angiogenic genes, including SMOC1 (SPARC related modular calcium binding 1) and SCG2 (secretogranin II). Immunofluorescent staining confirmed the increase of SMOC1 and SCG2 expression in both diabetic and burn wounds after fasting treatment. When the expression of SMOC1 or SCG2 was down-regulated, the fasting/refeeding-induced pro-angiogenic effects were markedly attenuated. Conclusion: This study suggests that fasting combined with refeeding, but not fasting solely, enhance endothelial angiogenesis through the activation of SMOC1 and SCG2, thus facilitating neovascularization and rapid wound healing.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Ayuno , Neovascularización Fisiológica , Osteonectina/metabolismo , Repitelización , Secretogranina II/metabolismo , Animales , Quemaduras/terapia , Línea Celular , Proliferación Celular , Cicatriz/metabolismo , Células Endoteliales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Piel/metabolismo , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA